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Topic 1 Sequences & Proof

1

The Sigma Notation

means that
𝑟=0

5

∑ 2𝑟 + 1

(2 × 0 + 1) + (2 × 1 + 1) +... + (2 × 5 + 1)
Where the top number of the sigma notation denotes how many times r will be
substituted in a pattern of , , etc.𝑟 𝑟 + 1 𝑟 + 2

The bottom number denotes the first number of that will be substituted for.𝑟 
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2

Arithmetic Sequences and Series

An arithmetic sequence holds a general pattern when counting the next term which
is usually easily detectable.The common difference in an arithmetic sequence is
denoted as - .𝑑

For example: 2,5,8,11.. Etc. is an arithmetic sequence.

One way to find the arithmetic sequence is to first look at the difference between
each term. The difference is 3, hence can be expressed as . Substituting into𝑑 3𝑑
the first term, we get that it is minused by one, hence

𝑈
𝑟

= 3𝑑 − 1

An expression for an arithmetic sequence general term can be given as the
following:

(SL 1.2)𝑈
𝑛

= 𝑢
1

+ (𝑛 − 1)𝑑

Where
is the first term𝑢

1
is the term’s order number𝑛
is the term’s order number resultant𝑈

𝑛
is the common difference𝑑

The equation of an arithmetic sequence is called a series.

It is given using 2 formulas:

or (SL 1.2)𝑆
𝑛

= 𝑛
2 (2𝑢

1
+ (𝑛 − 1)𝑑 𝑆

𝑛
= 𝑛

2 (𝑢
1

+ 𝑢
𝑛
)

Where
is the first term𝑢

1
is the last term𝑢

𝑛
is the number of terms𝑛
is the common difference𝑑
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Otherwise, the sum of an arithmetic series can be shown symbol is shown below:

Moreover,
The series sequence is like this:
𝑆

𝑛
= 𝑛,  
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3

Geometric Sequences

Geometric sequences are similar to arithmetic sequences, however, instead of
adding a common difference , we multiply by common ratio .𝑑 𝑟

For example,
1, 2, 4, 8, 16, 32, 64....

Is a geometric sequence with common ratio . Common ratio can be found𝑟 = 2 𝑟
by dividing a higher term by one lower term.

For example, a common ratio can be expressed as

etc.𝑢
1
, 𝑟𝑢

1
, 𝑟2𝑢

1
, 𝑟3𝑢

1
, 𝑟4𝑢

1
, 𝑟5𝑢

1

And if we divide, for example a higher term by one lower term we get,

𝑟5𝑢
1

𝑟4𝑢
1

= 𝑟

The nth term of a geometric series can be given by

(SL 1.3)𝑢
𝑛

= 𝑢
1
𝑟𝑛−1

Where
is the term’s order number resultant𝑢

𝑛
is the first term𝑢

1
is the common ratio𝑟

The sum of a geometric series can be given by

or (SL 1.3)𝑆
𝑛

=
𝑢

1
(𝑟𝑛−1)

𝑟−1

𝑢
1
(1−𝑟𝑛)

1−𝑟  𝑟 ≠ 1

Where
is the first term𝑢

1
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is the common ratio𝑟

The sum of an infinite geometric series can be given by

thus (SL 1.8)𝑆
∞

=
𝑢

1

1−𝑟 ,  |𝑟| < 1 − 1 < 𝑟 < 1

If a geometric series switch positive, negative, positive negative then it is possible
that is a part of the equation.(− 1)𝑛

In order to find the convergence inequality in a sum of infinite geometric series,
substitute into .𝑟 − 1 < 𝑟 < 1
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4

Interest and Geometric Series

The following example is found in page 30, example 27 in the book:

When Jacob turned 18 he had access to the money his grandparents had invested
in a savings account. He decided to re-invest $10,000 at a compound rate of 3%
each year. He decided to add $200 to this investment on his next birthday and
each following birthday until he turned 25. Evaluate how much was in his account
just after his 25th birthday. Evaluate the total interest gained over this time.

= (((10000 × 1. 03 + 200) × 1. 03 + 200) × 1. 03 + 200)...  𝑒𝑡𝑐.

Hence, we realise that that is multiplied by times, or otherwise we10000 1. 037
times the left side by 1.03 each time as expressed in the equation

10000 × 1. 037

We also realise that each investment that is worth is also multiplied by200 1. 03
depending on the time of the initial investment. The first investment will be200
multiplied by times because it went through 6 other years/investments.1. 03 6

Thus:

= 10000 × 1. 037 + (200 × 1. 036 + 200 × 1. 035 + 200 × 1. 034 + 200 × 1. 033 +
+ 200 × 1. 03 + 200)

= 10000 × 1. 037 + 200(1. 036 + 1. 035 + 1. 034 + 1. 033 + 1. 032+ 1. 03 + 1)

We see a geometric sequence forming on the right side with = 1, and𝑢
1

𝑟 = 1. 03
thus we use the sum of geometric series formula𝑛 = 7

Hence:

= 10000 × 1. 037 + 200( 1(1.037−1)
1.03−1 )

= $13831. 23

∴ he gained 13831. 23 − (10000 + 7 × 200) = $2431. 23
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5

Direct Proof

Direct proof is when a proof of a statement is done through showing constructing a
series of reasoned connected established facts. In a direct proof the following
steps are used:

● Identify the given statement
● Use axioms, theorems, etc, to make deductions to prove the conclusion of

your statement is true

It is essential to know these:

When a number is defined odd, it is defined as 2n-1
When a number is defined even, it is defined as 2n.
9 and 3 divisibility rule:
Let a four digit number be defined by
Abcd
If 𝑎 + 𝑏 + 𝑐 + 𝑑 = 3𝑘
Then 𝑎𝑏𝑐𝑑 = 3𝑧
Where you can find in terms of and (not shown in the example) (If𝑧 3𝑘 𝑎𝑏𝑐𝑑
attempting to solve remember that since is the front term, then )𝑎 𝑎 = 3𝑥 × 103

This also applies for the number 9.

For example (Example 28, Page 37):

Show that
1 + 3 + 5 + 7... + (2𝑛 − 1) = 𝑛2

We write that, including extra reversed terms
𝑆 = 1 + 3 + 5 + 7... + (2𝑛 − 5) + (2𝑛 − 3) + (2𝑛 − 1)
We write it in the reverse order
𝑆 = (2𝑛 − 1) + (2𝑛 − 3) + (2𝑛 − 5) +... + 7 + 5 + 3 + 1
We sum the two
2𝑆 = 2𝑛 + 2𝑛 + 2𝑛 + 2𝑛....
The sum of happens times (meaning there are of ), thus2𝑛 𝑛 𝑛 2𝑛
2𝑆 = 2𝑛2

𝑆 = 𝑛2
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Another example (Example 29, Page 38):

Show that:

a. The sum of an odd and even positive integer is always odd
b. The sum of two even numbers is always even
c. The sum of two odd numbers is always even

a.
Let us denote that

Odd number is expressed by 𝑎 = 2𝑧 − 1
Even number is expressed by 𝑏 = 2𝑦
Hence
𝑎 + 𝑏 = 2𝑧 − 1 + 2𝑦
𝑎 + 𝑏 = 2(𝑧 + 𝑦) − 1

b.
𝑎 = 2𝑧
𝑏 = 2𝑦
Hence
𝑎 + 𝑏 = 2𝑧 + 2𝑦
𝑎 + 𝑏 = 2(𝑧 + 𝑦)

c.
𝑎 = 2𝑧 − 1
𝑏 = 2𝑦 − 1
Hence
𝑎 + 𝑏 = 2𝑧 − 1 + 2𝑦 − 1
𝑎 + 𝑏 = 2(𝑧 + 𝑦 − 1)

(These examples don’t have conclusions and don’t show the elements of the
unknown letters, make sure to include them!)

Another example (example 33, page 39):

Show that

1
2 − 1

4 + 1
8 − 1

16 + 1
32 − 1

64 +... = 1
3

We split the equation into 2 different geometric series:
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LHS

( 1
2 + 1

8 + 1
32 ...) − ( 1

4 + 1
16 + 1

64 ...)

We notice that both are converging infinite geometric series of whos ,|𝑟| < 1
hence we subtract sums

1
2

1− 1
4

−
1
4

1− 1
4

= 2
3 − 1

3 = 1
3
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6

Proof by Contradiction

Proof by contradiction is when you create an opposite of a statement and prove
that the opposite statement is true or false.

It is essential to know these:

When a number is defined odd, it is defined as 2n-1
When a number is defined even, it is defined as 2n.
9 and 3 divisibility rule:
Let a four digit number be defined by
Abcd
If
𝑎 + 𝑏 + 𝑐 + 𝑑 = 3𝑘
Then 𝑎𝑏𝑐𝑑 = 3𝑧
Where you can find in terms of and (not shown in the example) (If𝑧 3𝑘 𝑎𝑏𝑐𝑑
attempting to solve remember that since is the front term, then )𝑎 𝑎 = 𝑞 × 103

This also applies for the number 9.

Example (Example 34, Page 42):

Prove by contradiction:
a. If is odd then is also odd𝑛 𝑛2

b. If is even then is also even𝑛2 𝑛 

a. If is odd then is even𝑛 𝑛2

𝑛2 = 2𝑘
𝑛 × 𝑛 = 2𝑘

Statement can not be true because if is odd then the product of 2 is also odd.𝑛 𝑛

b. If is even then is odd𝑛2 𝑛 

𝑛 = 2𝑘 − 1
𝑛2 = (2𝑘 − 1)2

𝑛2 = 4𝑘2 − 4𝑘 + 1
𝑛2 = 2(2𝑘2 − 2𝑘) + 1
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𝑛2 = 2𝑝 + 1
Hence it's odd, thus if odd makes odd then even makes even.

Example (Example 35, Page 42):

Show that is irrational.2

2 = 𝑚
𝑛

2 = 𝑚2

𝑛2

2𝑛2 = 𝑚2

Which means that m is an even integer

Let hence𝑚 = 2𝑘 𝑚2 = 4𝑘2 = 2𝑛2

2𝑛2 = 4𝑘2

Both have a factor of 2, which is not prime. Recall we have assumed that they 2
can be expressed as prime numbers . They have a common factor. As such,𝑚, 𝑛
you cannot find with no common factors.𝑚

𝑛

Example (Example 37, Page 43):

Prove that if then𝑚,  𝑛 ∈ 𝑍, 𝑚2 − 4𝑛 − 7 ≠ 0

𝑚2 − 4𝑛 − 7 = 0
𝑚2 = 4𝑛 + 7
𝑚2 = 2(2𝑛 + 3) + 1

is hence odd𝑚2

Let 𝑚 = 2𝑝 − 1
(2𝑝 − 1)2 − 4𝑛 − 7 = 0
4𝑝2 − 4𝑝 + 1 − 4𝑛 − 7 = 0
2𝑝2 − 2𝑝 − 2𝑛 − 3 = 0
2(𝑝2 − 𝑝 − 𝑛) = 3
Cannot be true because it is even since it is multiplied by 2.
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7

Proof by Counterexample

Proof by counterexample is when a statement is proven wrong by showing an
example which contradicts the statement.

Example (Example 38, Page 44):

If and is divisible 4, then is divisible by 4𝑛 ∈ 𝑍 𝑛2 𝑛

𝑛 = 2,  𝑛2 = 4

The squared is divisible by 4, however, is not.𝑛 
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8

Proof by Induction

Proof by induction is by proving for one number, and a number higher than that. It
is like a domino, if you hit one domino it hits the others. As such, if you prove that
the one higher is true, that means higher and higher will also be true.

We follow the following steps:

B.A.I.C

Base step: where you substitute a number for n, and prove that the statement is
true

Assumption: you substitute for𝑛 𝑘

Inductive step: you substitute for and do algebraic manipulation. What𝑛 𝑘 + 1
happens here is usually the following:

… an addition sequence with = sum equation of sequence with (as defined in𝑘 𝑘
the assumption step)
…. An addition sequence with = sum equation of sequence with𝑘 + 1  𝑘 + 1

To prove, you do

Sum equation of sequence with + the difference of addition sequence with𝑘
term = sum equation of sequence with k+1𝑘 + 1

This happens because the term has all the terms that k has, but an extra𝑘 + 1
k+1 term.

Note for the difference: alternatively and almost most likely, you will substitute the
sum equation of sequence with into addition sequence with term.𝑘 𝑘 + 1

For example:
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Conclusion: Since base step for X is true, and when assumed true for some
where (depending on question), it is also true for . Then by𝑛 = 𝑘 𝑘 ∈ 𝑍+ 𝑛 = 𝑘 + 1

the principle of mathematical induction that the statement is true for all positive
integers.
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9

Permutations & Combinations

Combinations are used when there are no rules to the combinations of something.

Permutations are used when there is a set of rules for the combinations of
something.

The formula for combinations is the following:

or (AHL 1.10)𝑛
𝑟( ) 𝑛𝐶

𝑟
= 𝑛!

𝑟!(𝑛−𝑟)!

The formula for permutations is the following:

(AHL 1.10)𝑛𝑃
𝑟

= 𝑛!
(𝑛−𝑟)!

Where
is the number of distinct objects𝑛
is the number of objects𝑟

General rules that must be known for different type of questions:

When something is treated as a group, such as books in a bookshelf all in the
history category, treat it as a single object.

You can find probability by putting the desired combination over all possible
combinations.

If a multi object is treated as a single object, remember that this single object can
have combinations inside it too. (Example 1)

Permutations don’t have to be expressed in the formula, and can be done so
logically. (Example 3)

Sometimes it is easier to subtract combinations from the total combinations in
order to get an answer. (Example 2)

Identity:

because of symmetry𝑛𝐶
𝑟

= 𝑛𝐶
𝑛−𝑟
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, either because there is only a single way to arrange nothing, or0! = 1 (𝑛+1)!
(𝑛+1) = 1

1
when 𝑛 = 0

Example 1 (Exercise 1H, 7, Page 57):

On a bookshelf there are four mathematics books, three science books, two
geography books and four history books. The books are all different.

a. In how many different ways can the book be arranged on the shelf?

b. In how many ways can the books be arranged so that the books of the
same subject can be grouped together?

a.
The books can be arranged ways, because there is nothing specified.13!

b.
We group each subject and arrange in the most ways possible in their own groups.
For example, there are 4 history books, hence there are Ways of arranging4!
history books when grouped. We do this for every subject and multiply them
together

4! × 3! × 2! × 4!

However, we also need to realise that there are ways of arranging the book4!
groups together, hence

ways of arranging4! × 3! × 2! × 4! × 4! = 165888 

Example 2 (Example 47, Page 56):

There are 8 boys and 5 girls that attend the senior mathematics club. Find out how
many ways a teacher can choose a team of 6 students to represent the school in a
competition if:

a. There are no gender restrictions

b. The team is to be made of 3 girls and 3 boys

c. At least two of each gender are included in the team

a.
Since we are choosing 6 candidates from a total of 13:



Mathematics Flash Cards: Analysis & Approaches Higher Level

13𝐶
6

= 13!
6!(13−6)! = 1716

b.
We split the group of boys and girls up, and choose from them. Hence:

8𝐶
3

× 6𝐶
3

= 8!
3!(8−3)! × 6!

3!(6−3)! = 1120

c.
We will subtract on what is not possible from the total.

It is impossible to have 6 boys, hence
8𝐶

6
× 5𝐶

0

It is impossible to have 5 boys and 1 girl, hence
8𝐶

5
× 5𝐶

1

It is impossible to have 1 boy and 5 girls, hence
8𝐶

1
× 5𝐶

5

Subtracting from the total we get
13𝐶

6
− 8𝐶

1
× 5𝐶

5
− 8𝐶

5
× 5𝐶

1
− 8𝐶

6
× 5𝐶

0
= 1400

Example 3 (Exercise 1H, 10, Page 57):

a. How many four digit numbers can be made using the digits
?0,  1,  3,  4,  5,  8,  9

b. How many four digits numbers have no repeated digits?

c. How many four digit even numbers can be made using the digits?

d. How many four digit even numbers can be made that are divisible by ?5

a.
We need to notice that we can not have the 0 in the beginning, otherwise it would
be a 3 digit. We choose the amount of possibilities for each digit. For example, we
can only have 6 digits in the beginning because we exclude 0.

6 × 7 × 7 × 7 = 2058
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b.
Similar concept follows, however, the amount of numbers we can choose will
lessen gradually as we use them up in creating our digit:

6 × 6 × 5 × 4 = 720

c.
For it to be even, we have to make sure that it ends in or .0,  4 8

6 × 7 × 7 × 3 = 882

d.
For it to be even and also be divisible by , we have to make that it ends in5 0.

6 × 7 × 7 × 1 = 294

Example 4 (made-up):

In how many different ways can the letters in the word calculator be arranged?

We notice that it has repeating letters a, c and l.
Thus we put them in a group. There are of each. We have to have a total of2 10
letters to choose. We divide the repeating groups in factorial notation over the total
possibilities. Hence:

10!
2!×2!×2! = 453600
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10

Binomial Theorem

The binomial expansion helps expanding brackets and finding the coefficients in
big expansions.

The binomial theorem for when 𝑥 ∈ 𝑅 ,  𝑥 ≥ 1 ,  𝑛 ≥ 1

(SL 1.9)(𝑎 + 𝑏)𝑛 = 𝑎𝑛 + 𝑛𝐶
1
𝑎𝑛−1𝑏 +... + 𝑛𝐶

𝑟 
𝑎𝑛−𝑟𝑏𝑟 +... + 𝑏𝑛

The binomial theorem for when and (with the signs would𝑛 ∈ 𝑅 𝑎 = 1,  − 1 − 1
be alternating)

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 + 𝑛(𝑛−1)
2! 𝑥2 + 𝑛(𝑛−1)(𝑛−2)

3! 𝑥3 +... + 𝑛(𝑛−1)(𝑛−2)...(𝑛−𝑟+1)
𝑟! 𝑥

(NOT GIVEN IN THE FORMULA BOOKLET!)

Proof:

Let be a binomial expansion. Then:(1 + 𝑥)𝑛

1𝑛 + 𝑛𝐶
1

× 1𝑛−1 × 𝑥1 + 𝑛𝐶
2

× 1𝑛−2 × 𝑥2 + 𝑛𝐶
3

× 1𝑛−3 × 𝑥3 +... + 𝑥𝑛

The s cancel out. Let us express the in terms of factorials, then:1 𝐶

1 + 𝑛!
1!(𝑛−1)! × 𝑥 + 𝑛!

2!(𝑛−2)! × 𝑥2 + 𝑛!
3!(𝑛−3)! × 𝑥3 +... + 𝑥𝑛

Cancelling out the factorials we get
1 + 𝑛𝑥 + 𝑛(𝑛−1)

2! 𝑥2 + 𝑛(𝑛−1)(𝑛−2)
3! 𝑥3 +... + 𝑥𝑛

QED

This formula should also be used when the power of an expansion is unusual
looking. It is called Newton’s generalisation of the binomial theorem.

I.e (1 + 2𝑥)
3
4

If a term has no inside with an unusual power, then look to factor out. E.g1

(5 + 10𝑥)
− 1

2

((1 + 2𝑥) × 5)
− 1

2

and expand the bracket on left using the above formula.(1 + 2𝑥)
− 1

2 × 5
− 1

2
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When a question asks about in an expansion, you equate the to the general𝑥𝑛 𝑥𝑛

binomial term of (Examples 1, 3)𝑛𝐶
𝑟 

𝑎𝑛−𝑟𝑏𝑟

When it asks to estimate, you will have to give proper suitable value for and .𝑥 𝑦
(Example 2)

When it asks for the independent term, you equate to the general binomial term𝑥0

of , or otherwise you find the coefficient that has no in its expansion.𝑛𝐶
𝑟 

𝑎𝑛−𝑟𝑏𝑟 𝑥

When 2 binomials expansions are multiplied together, it follows this form (Example
5):

Example 1 (Example 49, Page 60):

Find the coefficient in the expansion of .𝑥3𝑦3 (𝑥 + 3𝑦)6

The general term in this expansion is given as

6𝐶
𝑟
𝑥6−𝑟(3𝑦)𝑟 = 𝑥3𝑦3

We equate the powers to find . For example, in component we get that𝑟 𝑥

𝑥6−𝑟 = 𝑥3

𝑟 = 3

To find the coefficient, we have calculate all the numbers which are not stuck to a
letter. For example, . The 3 is a coefficient thus we have to include it.3𝑦
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is the coefficient.
6𝐶

3
× 33 = 540

Example 2 (Example 50, Page 60):

Use the binomial theorem to expand . Hence find the value of(2𝑥 + 3𝑦)5 2. 035

correct to decimal places.5

We expand using the binomial theorem:
= (2𝑥)5 + 5𝐶

1
(2𝑥)4(3𝑦) + 5𝐶

2
(2𝑥)3(3𝑦)2 + 5𝐶

3
(2𝑥)2(3𝑦)3 + 5𝐶

4
(2𝑥)(3𝑦)4 + (5𝑦

We notice that , hence we can deduce that and2𝑥 + 3𝑦 = 2. 03 𝑥 = 1 𝑦 = 0. 01

=32𝑥5 + 240𝑥4𝑦 + 720𝑥3𝑦2 + 1080𝑥2𝑦3 + 810𝑥𝑦4 + 243𝑦
We substitute and get
= 32. 47309

Example 3 (Exam-style questions, 17, Page 69):

Find the coefficient of the term in in the binomial expansion of𝑥5 (3 + 𝑥)(4 − 2𝑥)8

Using FOIL, we can get that

3(4 − 2𝑥)6 + 𝑥(4 − 2𝑥)6

Working with the left bracket first we do the following
3( 8𝐶

𝑟
48−𝑟(− 2𝑥)𝑟) = 𝑥5

𝑟 = 5
As such, we get the coefficient as
3(8𝐶

5
43(− 2)5) =− 344064

Working with the right bracket we do the following
𝑥( 8𝐶

𝑟
48−𝑟(− 2𝑥)𝑟) = 𝑥5

𝑥(8𝐶
𝑟
48−𝑟 − 2𝑟𝑥 𝑟) = 𝑥5

8𝐶
𝑟
48−𝑟 − 2𝑟𝑥𝑟+1 = 𝑥5

𝑟 = 4
As such, we get the coefficient as

8𝐶
4
44(− 2)4 = 286720
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Hence we get
as the coefficient− 344064 + 286720 =− 57344

Example 4 (Exercise 7I, 6 b, Page 61):

Find the coefficient of in the expansion of𝑥3𝑦2 (2𝑥 + 𝑦)(𝑥 + 𝑥
𝑦 )5

5𝐶
𝑟
(𝑥)5−𝑟( 𝑦

𝑥 )𝑟 = 𝑥3𝑦2

5𝐶
𝑟
𝑥 5−𝑟𝑥−𝑟𝑦𝑟 = 𝑥3𝑦2

5𝐶
𝑟
𝑥 5−2𝑟𝑦𝑟 = (𝑥3𝑦)𝑦
hence coefficient is .𝑟 = 1 5

Example 5 (Example 53, Page 64):

Use the binomial expansion to show that 1+𝑥
1−𝑥 ≃ 1 + 𝑥 + 1

𝑥2 , 𝑥| | < 1

We rewrite it as

(1 + 𝑥)
1
2 (1 − 𝑥)

− 1
2

We expand each bracket independently:

(1 + 𝑥)
1
2 = 1 + 0. 5𝑥 + 0.5(0.5−1)

2! 𝑥2 + 0.5(0.5−1)(0.5−2)
3! 𝑥3

= 1 + 𝑥
2 − 𝑥2

8 + 𝑥3

16

(1 − 𝑥)
− 1

2 = 1 + (− 0. 5)(− 𝑥) + −0.5(−0.5−1)
2! (− 𝑥)2 + −0.5(−0.5−1)(−0.5−

3!

= 1 + 𝑥
2 + 3𝑥2

8 + 5𝑥
3

16

Since it only asks for the first 3 terms in the question, we start with multiplying the
first term with the terms in the right equation. As we shift terms in the left side, we
do so in the answer as well. As such, for example, the second term will begin as a
second term and will be defined as the product of the 2nd term in left with 1st term
in right.
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(for example, this is the first term multiplied to the right side)= 1 + 𝑥
2 + 3𝑥2

8

(for example, this is multiplied as the second term to the right     + 𝑥
2 + 𝑥2

4
𝑥
2

side)

(for example, this is 1 multiplied by the 3rd term from the left side)          − 𝑥2

8

≃ 1 + 𝑥 + 𝑥2

2

Example 6 (Exercise 7J, 6, Page 65):

a. Find the first four terms of the binomial expansion of 1 − 4𝑥,  𝑥| | < 1
4

b. Show that the exact value of when is .1 − 4𝑥 𝑥 = 1
100

2 6
5

c. Hence, determine the value of to 5 decimal places.6

a.
We first rewrite it as the following

(1 − 4𝑥)
1
2 = 1 − 2𝑥 + 0.5(0.5−1)

2! (− 4𝑥)2 + 0.5(0.5−1)(0.5−2)
3! (− 4𝑥)3

= 1 − 2𝑥 − 2𝑥2 − 4𝑥3...

b.

1 − 1
25 = 24

25 = 22×6

52

= 2
5 6

c.
Hence, to first find the value of we substitute into the binomial2

5 6 𝑥 = 1
100

expansion as it is defined:

= 1 − 2
100 − 2

10000 − 4
1000000 = 2

5 6

Thus we have to multiply by on both sides5
2

= 5
2 (1 − 2

100 − 2
10000 − 4

1000000 ) = 6
≈ 2. 44949
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Topic 2 Functions
1

Domain, Range and Functions’ basic properties

The domain of a function or of a graph is the territory in which x values exist.

The range of a function or of a graph is the territory in which y values exist.

NOTE: when solving an inequality, if you multiply or divide both sides by a
negative, then you swap the inequality.

It is written in the following form:

Domain: 𝑥 | 𝑥 ∈ 𝑅, 𝑍, 𝐶, 𝑄, 𝑁,  𝑖. 𝑒 𝑥 | 𝑥 ∈ 𝑅,  𝑥 ≠ 5
Range: 𝑦 | 𝑦 ∈ 𝑅, 𝑍, 𝐶, 𝑄, 𝑁,  𝑖. 𝑒 𝑦 | 𝑦 ∈ 𝑁+,  𝑦 ≠ 5

Function is a type of graph that is defined as:
One to one
Many to one
I.e one x value for one y value ( graphs)𝑦 = 𝑚𝑥 + 𝑏
Or many x values for one y value ( graphs)𝑥2

Onto function
Let us define set as set as𝐴 𝑎, 𝑏, 𝑐, 𝑑 𝐵 1, 2, 3
Let us define that 𝑎 = 1, 2
𝑏 = 3
𝑐 = 2
𝑑 = 1
Notice that, set , and consists of all numbers which are linked to each other,𝐴 ∈ 𝐵
as such it is defined as an onto function.

Other relations include but are not defined as functions:
One to many ( graphs)𝑦2 = 𝑥
Many to many graphs)(1 = 𝑦2 + 𝑥2

Another way checking whether a graph is a function is through the vertical line test.
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Axis of symmetry of a quadratic function can be found by plotting x value for

in (SL 2.6)− 𝑏
2𝑎 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

To find the asymptotes and the intersections of a function:

To find the intercept, substitute𝑦 𝑥 = 0

To find the intercept, substitute𝑥 𝑦 = 0

To find the horizontal asymptotes of a function who has an in the denominator,𝑥
equate the denominator to as for example is undefined thus an asymptote.0 1

0

To find the vertical asymptotes of a function, divide the highest of the𝑥𝑛

denominator by the same . If is not present in the numerator and/or there are𝑥𝑛 𝑥𝑛

lower powers, that is the same as . If there are higher powers on the0

𝑥𝑛 = 0

numerator than the denominator, then there are no vertical asymptotes.
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2

Vertex Form

The general vertex form of a quadratic is given as

where is the coordinate of the vertex.𝑎(𝑥 − ℎ)2 + 𝑘 (ℎ,  𝑘)

Example (made-up):

Put the function in the vertex form2𝑥2 + 6𝑥 + 40

We first factories the 2

2(𝑥2 + 3𝑥) + 40

We then divide the inside by 2 and put the square outside, removing . After doing𝑥
so, we minus the squared part of the number with no to the outside. It is𝑥
important to keep note of the factored 2, because we then times the outside
number by 2. It is important to note that the number that the number on the outside
will ALWAYS be a minus.

𝑦 = 2((𝑥 + 1. 5)2 − 2. 25) + 40

𝑦 = 2((𝑥 + 1. 5)2 − 4. 5 + 40

𝑦 = 2(𝑥 + 1. 5)2 + 35. 5

Hence the vertex is (− 1. 5, 35. 5)

ALTERNATIVE METHOD

We know that coordinate of the vertex is𝑥 − 𝑏
2𝑎

Hence

𝑥 =− 6
4

Substituting the value in the quadratic we get𝑥
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𝑦 = 2( −3
2 )2 + 6(− 3

2 ) + 40

𝑦 = 2( 9
4 ) − 9 + 40

𝑦 = 4. 5 − 9 + 40
𝑦 = 35. 5
Re-writing in vertex form we get

𝑦 = 2(𝑥 + 1. 5)2 + 35. 5
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3

Rational Functions

Rational functions are functions which have in the denominator. Moreover, is a𝑥 1
𝑥

rational fraction.

Example 1 (Example 8, Page 88):

Determine the domain and range of the function and write down the𝑦 = 2𝑥−1
1−3𝑥

equations of the asymptotes and the coordinates of any axis intercepts.

We first equate the denominator to 0, getting the equation

1 − 3𝑥 = 0
Hence is a vertical asymptote.𝑥 = 1

3

We then divide the highest power of in the denominator to the numerator getting𝑥

is a horizontal asymptote.2𝑥
−3𝑥 =− 2

3

To find the intercept we equate𝑥 𝑦 = 0
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0 = 2𝑥−1
1−3𝑥

0 = 2𝑥 − 1
𝑥 = 0. 5

To find the intercept we equation𝑦 𝑥 = 0

𝑦 = −1
1
.𝑦 =− 1

Sketch:

Hence we can write the domain as
𝑥 | 𝑥 ∈ 𝑅,  𝑥 ≠ 1

3
And the range as
𝑦 | 𝑦 ∈ 𝑅,  𝑦 ≠− 2

3
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4

Square root functions

Defined as 𝑦 = 𝑥
Not to confuse with because𝑦2 = 𝑥 𝑦 =± 𝑥

Example 1 (Example 9, page 89):

Determine the domain and range of , the axis intercepts and𝑦 = 2 − 2𝑥 + 3
describe the transformation from the graph and confirm your answer𝑦 = 𝑥
graphically

We first know that the square root part of the function cannot be lower than 0.
Hence we rewrite it as the following

2𝑥 + 3 ≥ 0

𝑥 ≥− 3
2

Since the smallest value that can achieve 0, the largest value that can2𝑥 + 3 𝑦
be achieved is 2.

𝑦 ≤ 2

As such the domain and the range can be written as
𝑥 | 𝑥 ∈ 𝑅,  𝑥 ≥− 3

2
𝑦 | 𝑦 ∈ 𝑅,  𝑦 ≤ 2

The intercepts are the following:
When the intercept is𝑦 = 0 𝑥
0 = 2 − 2𝑥 + 3
2 = 2𝑥 + 3
4 = 2𝑥 + 3
𝑥 = 0. 5

When the intercept is𝑥 = 0 
𝑦 = 2 − 3
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Describing the transformation:

Since there is a negative sign there is a reflection on the axis𝑥

Vertical translation of 2 up, otherwise as 0
2( )

Horizontal stretch factor of 0.5

Horizontal translation of 1.5 left, otherwise as −1.5
0( )
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5

Partial Fraction Decomposition

Partial fraction decomposition helps split up a whole quotient quadratic into
different parts.

Example 1 (Example 12, Page 92):

Express in partial fractions2𝑥−5

𝑥2−3𝑥+2

We first factorise the denominator

2𝑥−5
(𝑥−2)(𝑥−1)

Then we write in the form

2𝑥−5
(𝑥−2)(𝑥−1) = 𝐴

(𝑥−2) + 𝐵
(𝑥−1)

We multiple both sides by and get(𝑥 − 2)(𝑥 − 1)

2𝑥 − 5 = 𝐴(𝑥 − 1) + 𝐵(𝑥 − 2)

Now to find values of and we substitute for their solutions:𝐴 𝐵 𝑥

For example, substitute 𝑥 = 1

2 − 5 = 𝐴(0) + 𝐵(− 1)
− 3 =− 𝐵
𝐵 = 3

Substitute 𝑥 = 2

4 − 5 = 𝐴(1) + 𝐵(0)
− 1 = 𝐴

Thus, we rewrite substituting and to get the final form:𝐴 𝐵

− 1
(𝑥−2) + 3

(𝑥−1) = 2𝑥−5

𝑥2−3𝑥+2
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Partials of the form
𝐴

(𝑥+ℎ)𝑘

Can be expressed as
𝐴

(𝑥+ℎ)𝑘 = 𝐵
(𝑥+ℎ) + 𝐶

(𝑥+ℎ)2 +···+ 𝐷

(𝑥+ℎ)𝑘−1 + 𝐸

(𝑥+ℎ)𝑘

6

Quotient & Reciprocal Functions

Quotient functions are functions which are 1
𝑓(𝑥)

General rules of quotient and reciprocal functions:

Zeros/solutions of become the vertical asymptotes in𝑓(𝑥) 1
𝑓(𝑥)

All important values become . This includes intercepts,minimums and𝑦 1
𝑦 𝑦

maximums of a function. They all become reciprocated.

When . When .𝑓(𝑥) > 0,  1
𝑓(𝑥) > 0 0 > 𝑓(𝑥),  0 > 1

𝑓(𝑥)

Example 1 (Example 31, Page 119):

Draw the graph of . On the same set of axes, sketch the graph of the𝑦 = 𝑥(𝑥 − 4)
reciprocal. For both graphs, label any intercepts, zeros, extremas and asymptotes.

For the graph , zeroes are at and .𝑦 = 𝑥(𝑥 − 4) 0 4

Knowing this, we know that the minima is at because of symmetry.𝑥 = 2

Hence, if we substitute to get the coordinate it is at .𝑦 (2,  − 4)

No asymptotes in a quadratic graph.

Hence we sketch:
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For the reciprocal graph, we know that vertical asymptotes exist at 𝑥 = 0,  4
because .1

𝑓(𝑥) ,  𝑓(𝑥) ≠ 0

We know the vertical asymptote exists at from the asymptote power𝑦 = 0 𝑥𝑛

division rule.

The coordinates of the minima hence become , which is now in fact a(2, − 1
4 )

maxima.

Sketching we get:
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Example 2 (Example 11, Page 91)

Find the domain and range of and state any equation of asymptotes.𝑦 = 1
𝑥+1

Confirm your answers graphically.

To find the vertical asymptote we equation the denominator to hence0,

𝑥 + 1 = 0
𝑥 =− 1

That means that has to be for it not to be imaginary numbers𝑥 𝑥 >− 1

Horizontal asymptote at because the denominator can be extremely large,𝑦 = 0
but the product of will never reach 0 even if is a very, very large𝑦 = 1

𝑥+1
𝑥

number. Or, because there are no powers present in the numerator, it is safe to𝑥
say that 0

𝑥𝑛 = 0

The range because both numerator and denominator will always𝑦 > 0,  𝑦 ≠ 0
result in a positive number.
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7

Absolute Value and Modulus Functions & Inequalities

Absolute value functions can never be negative.

To remember:

𝑦 = 𝑎 𝑥 − ℎ| | + 𝑘

Where is the vertex of linear modulus graph(ℎ, 𝑘)

When solving modulus inequalities the best thing to do is to usually graph them.

When solving modulus inequalities in which the modulus function’s gradient is a
negative, swap the inequalities around when separating them. (Example 4)

For inequality questions, you can first solve it with an equal sign. After finding all
the values, you can apply logic to create the inequality in order not to confuse𝑥
yourself when solving with inequalities.

Example 1 (Example 13, Page 95):

Determine the domain and range of and sketch the function.2 − 2𝑥| | + 1

2 − 2𝑥| | = | − 2 × (− 1 + 𝑥)| = − 2| | × − 1 + 𝑥| |
= 2 𝑥 − 1| | + 1
Hence is the vertex(1, 1)
It is concave up because is positive𝑎

intercept when , at𝑥 𝑦 = 0 2 𝑥 − 1| | + 1 = 0
hence it doesn’t exist𝑥 − 1| | =− 0. 5

intercept when , at , (𝑦 𝑥 = 0 2 0 − 1| | + 1 = 3 0, 3)

Domain𝑥 | 𝑥 ∈ 𝑅
Range 𝑦 | 𝑦 ∈ 𝑅,  𝑦 ≥ 1

Sketch:
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Example 2 (Example 16, Page 96):

Solve 𝑥 + 1| | =− 2𝑥 − 5

We first need to rewrite the absolute value equation into 2 different equations
𝑥 + 1 =− 1(− 2𝑥 − 5)
𝑥 + 1 =− 2𝑥 − 5
Solving for the first
𝑥 + 1 = 2𝑥 + 5
𝑥 =− 4
Solving the second
𝑥 =− 2

We substitute back in both solutions to see if they work
− 4 + 1| | = 8 − 5
LHS = RHS, hence its a solution

− 2 + 1| | ≠ 4 − 5
LHS RHS, hence its not a solution≠

Example 3 (Example 17, Page 97):

Solve 3𝑥 − 4| | = 2𝑥 + 3| |
Let both sides be positive
3𝑥 − 4 = 2𝑥 + 3
𝑥 = 7
Let one side by negative and one positive
− 3𝑥 + 4 = 2𝑥 + 3
𝑥 = 1

5

-OR-

ALTERNATIVE METHOD
Square both sides
(3𝑥 − 4)2 = (2𝑥 + 3)2

9𝑥2 − 24𝑥 + 16 = 4𝑥2 + 12𝑥 + 9
Make it a single quadratic
5𝑥2 − 36𝑥 + 7 = 0
Factorise
(5𝑥 − 1)(𝑥 − 7)
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𝑥 = 1
5 , 7

-THEN-

We check through substitution.
3
5 − 4|| || = 2

5 + 3|| ||
17
5 = 17

5
LHS RHS, hence its a solution=

21 − 4| | = 14 + 3| |
7 = 7
LHS = RHS, hence its a solution

OTHER METHOD

Graph it, find intersections

Example 4 (Example 18, Page 98):

Solve
a. 2𝑥 − 4| | < 4
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b. 3 − 2𝑥| | ≥ 1

A.
Create inequality±
− 4 < 2𝑥 − 4 < 4
Separate
− 4 < 2𝑥 − 4
0 < 𝑥
Seperate the other
2𝑥 − 4 < 4
𝑥 < 4
Hence
∴ 0 < 𝑥 < 4

-OR-

Instead of doing inequality solving, solve it by finding intersections (equating), and𝑥
then apply logic for the inequality in the last step.

-OR-
ALTERNATIVE METHOD
Graph it, finding the intervals in which the line is greater than the modulus𝑦 = 4
function

B.
Create inequality (the inequalities in this example swap because the gradient of±
the graph is negative)
3 − 2𝑥 ≤ 1
3 − 2𝑥 ≥− 1
Separate
3 − 2𝑥 ≥− 1
− 2𝑥 ≥− 4
𝑥 ≥ 2
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Seperate the other
3 − 2𝑥 ≤ 1
𝑥 ≤ 1
Hence
∴ 𝑥 ≥ 2, 𝑥 ≤ 1 

-OR-

Instead of doing inequality solving, solve it by finding intersections (equating), and𝑥
then apply logic for the inequality in the last step.

-OR-
ALTERNATIVE METHOD
Graph it, finding the intervals in which the modulus function is greater than 𝑦 = 1
line

Example 5 (Example 19, Page 99):

Solve 𝑥2 − 5𝑥| | < 6

Create inequality±
− 6 < 𝑥2 − 5𝑥| | < 6
Separate
− 6 < 𝑥2 − 5𝑥
0 < 𝑥2 − 5𝑥 + 6
0 < (𝑥 − 3)(𝑥 − 2)
Since this is the internal part of the quadratic and the inequality states that we’re
looking for the part under, we know that .𝑥 < 2, 3 > 𝑥
Separate other
𝑥2 − 5𝑥 − 6 < 0
(𝑥 + 1)(𝑥 − 6) < 0
Since this is the external part of the quadratic, and the inequality states that we’re
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looking for the part under, we know that .− 1 < 𝑥 < 6

Thus .− 1 < 𝑥 < 2,  3 < 𝑥 < 6
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8

Piecewise defined functions

Piecewise functions are types of functions which have special properties in set
domains. For example, for .𝑥 ≤ 0 =  5𝑥 + 3,  𝑥 > 0 = 𝑥2

Example 1 (Exercise 2J, Page 102, 6b):

Rewrite as a piecewise function𝑦 = 3𝑥 − 9| | + 2

, hence inequality must be from i.e3| | 𝑥 − 3| | + 2 = 3 𝑥 − 3| | + 2 𝑥 = 3,  𝑥 ≤ 3
and as defined in the form where is a maxima or a minima𝑥 > 3 𝑎 𝑥 − ℎ| | + 𝑘 (ℎ, 𝑘)

When defining of a modulus function as piecewise, set the modulus to negative,≤
because it is a reflected line and thus is the opposite of the other.

Thus,
𝑓(𝑥) = {𝑥 ≤ 3,  − 3𝑥 + 11

{ 𝑥 > 3,  3𝑥 − 7

Example 2 (Exercise 2K, Page 106, 6):
Determıne whether the function is onto, one-to-one, neither or both.

This function is an onto function, since , has . This is, however, not a one to𝑅 𝑅+𝑈
one function because for say then , hence many to one.𝑦 = 1, 𝑥 =− 1,  1
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9

Odd and Even functions

A function can be odd, even or neither. This can be determined by doing the
following:

If it is even, then 𝑓(𝑥) = 𝑓(− 𝑥).
If it is odd, then − 𝑓(𝑥) = 𝑓(− 𝑥).

An even function is symmetrical about the axis.𝑦
An odd function has rotational symmetry of from the origin.180◦



Mathematics Flash Cards: Analysis & Approaches Higher Level

10

Function composition

Function composition is when 2 functions are combined. This is otherwise stated
as, for example, , otherwise as .𝑓(𝑔(𝑥)) (𝑓 ◦ 𝑔)(𝑥)

Hence or otherwise, the newly defined function’s domain can be found using the
properties stated above, or, can be done so through the use of logic of the new
function.

Example (from IB discord, source unknown):

Suppose and .𝑓(𝑥) = 9 − 𝑥 𝑔(𝑥) = 𝑥2 + 4

a. Find ’s asymptotes(𝑓 ◦ 𝑔)(𝑥)
b. Hence or otherwise, state its domain and range.

A.
The function has slanted asymptotes.

B.

.(𝑓 ◦ 𝑔)(𝑥) = 9 − 𝑥2 + 4
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We first notice that inside the square root we cannot have negative numbers.
However, since it is , we also notice that all negatives become positives. Hence,𝑥2

the inside can never become a negative. Therefore is the domain.𝑥 ∈ 𝑅

For range, let the function be defined as where . From this we9 − 𝑎 𝑎 = 𝑥2 + 4
could deduce that the maximum it can take is 9, and it is decreasing from nine.
However, the minimum that can take is when , i.e . As such, it will𝑎 𝑥 = 0 4 = 2
always be minused by 2 or more. Hence we can rewrite as , where9 − (2 + 𝑏)

. Thus the range is .𝑏 ∈ 𝑅 𝑦 ≤ 7,  𝑦 ∈ 𝑅
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11

Inverse Functions

Inverse functions are noted as . The functions that are inverted go through a𝑓−1(𝑥)
transformation of a reflection upon the line . This can, as a result, make𝑦 = 𝑥
some inverse functions actually not a function because they may not pass the
vertical line test. I.e 𝑓(𝑥) = 𝑥2.
In inverse functions the domain and range swap around.

Example (Example 29, Page 115):

a. Find the inverse relation of , and graph both the function and its𝑦 = 𝑥2 − 1
inverse relation on the same set of axes

b. State two different domain restrictions of the function, and the
corresponding ranges, in order that its inverse is a function, and for each,
state the domain and range of the inverse function

c. State the two functions, with their restricted domains, and their
corresponding inverse functions.

A.
𝑥 = 𝑦2 + 1
𝑦 =± 𝑥 − 1
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B. We need to limit the original function so that the inverse is also a function. Thus,
we can limit that or . The range can stay as it is, and as such it is0 ≤ 𝑥 𝑥 ≤ 0
1 ≤ 𝑦.

The new function’s range would be defined as if the original function is𝑦 ≤ 0
defined as . If then . The domain is .𝑥 ≤ 0 0 ≤ 𝑥 0 ≤ 𝑦 1 ≤ 𝑥

C. If , then the inverse would be𝑥 ≤ 0 𝑦 =− 𝑥 − 1
If , then the inverse would be0 ≤ 𝑥 𝑦 = 𝑥 − 1
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12

Translations

Translations are what would change the original graph into something new.

General tips:

Order of transformations:

http://mathforum.org/library/drmath/view/68503.html

Absolute value translations

Let a function be defined as .𝑓(𝑥) = 𝑥3 − 5𝑥 + 2

If , then all the - values will become positive, as such it bounces back off.𝑓(𝑥)| | 𝑦

http://mathforum.org/library/drmath/view/68503.html
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If , then all the input negative become as output as if they were positive𝑓( 𝑥| |) 𝑥 𝑥
values. As a result, it creates symmetry. We still input values, as such the− 𝑥
domain for still exists, it's just that it will resemble the positive values in the𝑥 ≤ 0 𝑥
result.

Reciprocals
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Example 1 (Example 31, Page 119):

Draw the graph of . On the same set of axes, sketch the graph of its𝑦 = 𝑥(𝑥 − 4)
reciprocal. . For both graphs, label any intercepts, zeros, extrema and𝑦 = 1

𝑥(𝑥−4)
asymptotes.

zeros are at .𝑥 0, 4
Using formula (SL 2.6) which determines the coordinate of the−𝑏

2𝑎 𝑥
maxima/minima we get . Substituting to get we get𝑥 = 2 𝑥 = 2 𝑦 𝑦 =− 4.

intercept is at because when𝑦 0 𝑥 = 0,  𝑦 = 0.

For we know that the denominator can’t be zero, hence at𝑦 = 1
𝑥(𝑥−4) 𝑥 = 0,  4

there are vertical asymptotes. Furthermore, for the value of the minima we𝑦
reciprocate to get as the new maxima. The Horizontal asymptote by ,− 1

4 ℎ→0
lim = 0

as the top has with coefficient 0. The general shape is as follows:𝑥
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Example 2 (made-up):

Suppose that the quadratic then has imaginary roots, as such it has no
asymptotes. Then, the general shape of such would follow:

Where the peak of the function is the value of the original function. The1
𝑦

Horizontal asymptote by , as the top has with coefficient 0.
ℎ→0
lim = 0 𝑥
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Stretch factors

Stretch factors multiply all the values out. In values the stretch factor is the𝑥
opposite.

I.e , then , there is horizontal a stretch factor of 2𝑓(𝑥) = 𝑥2 + 𝑥 + 1 2(𝑥2 + 𝑥 + 1)
(all values are )𝑦 × 2

If , then there is a vertical stretch factor of (all values are )𝑓(2𝑥) 1
2 𝑥 × 1

2

Horizontal & vertical translations are translations which move the graph up right left
down.

I.e 𝑓(𝑥) = 𝑥2 + 𝑥 + 1

, then there is a vertical translation of 1 unit up.𝑓(𝑥) + 1

, then there is a horizontal translation of 1 unit left.𝑓(𝑥 + 1)

Reflection transformations

I.e 𝑓(𝑥) = 𝑥2 + 𝑥 + 1
is a reflection on the axis.𝑓(− 𝑥) 𝑦
is a reflection on the axis.− 𝑓(𝑥) 𝑥

Combination and orders
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I.e in deal with the horizontal translation first, and then apply scale𝑓(𝑎𝑥 + 𝑏)
factor

Proof:
Since is a translation which is inside the brackets, then we can define it𝑓(𝑎𝑥 + 𝑏)
as different functions. Let . When we split the function up, to get𝑘(𝑥) = 𝑓(𝑎𝑥 + 𝑏)

and . If we do the stretch first, then to get𝑔(𝑥) = 𝑓(𝑎𝑥) ℎ(𝑥) = 𝑓(𝑥 + 𝑏) 𝑔(ℎ(𝑥))
. If we do horizontal translation first, then𝑓(𝑎(𝑥 + 𝑏)) =  𝑓(𝑎𝑥 + 𝑎𝑏) ≠ 𝑘(𝑥)

.ℎ(𝑔(𝑥)) = 𝑓(𝑎𝑥 + 𝑏) = 𝑘(𝑥)

In apply the scale factor, and then the vertical shift.𝑎𝑓(𝑥) + 𝑏

Proof:
Here, nothing is put into brackets thus it follows regular rules. It can otherwise be
re-written as where𝑎𝑦 + 𝑏 𝑓(𝑥) = 𝑦
Translations.pdf

https://drive.google.com/file/d/1_3uSq5nJjOU-3VvVjP1MC2FvHk89P7gt/view?usp=sharing
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Topic 3 Complex Numbers
1

Completing the square

Completing the square helps you put a quadratic into vertex form (𝑥 − ℎ)2 + 𝑘
where are the coordinates of the minima/maxima.(ℎ, 𝑘)

Example 1 (Exercise 3B, d):

Complete the square and give the answer in exact form

3𝑥2 − 7𝑥 + 2 = 0

If there is a coefficient to the , divide it from and𝑥2 𝑥2 𝑥

3(𝑥2 − 7
3 𝑥) + 2 = 0

Divide the coefficient of by 2. Remove the from each side and put the square𝑥 𝑥
outside the bracket

3(𝑥 − 7
6 )2 + 2 = 0

Square the term without the and put it outside the squared bracket with a minus𝑥

3(𝑥 − 7
6 )2 − 72

62 ) + 2

3(𝑥 − 7
6 )2 − 49

36 ) + 2

Times it by the coefficient we divided in the initial step

3(𝑥 − 7
6 )2 + 2 − 147

36

3(𝑥 − 7
6 )2 − 25

12

To solve, now we re-arrange it so that
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3(𝑥 − 7
6 )2 = 25

12

(𝑥 − 7
6 )2 = 25

36

(𝑥 − 7
6 ) =± 25

36

(𝑥 − 7
6 ) =± 5

6

Now to solve for the plus and the minus

𝑥 − 7
6 =− 5

6

𝑥 = 1
3

And

𝑥 − 7
6 = 5

6

𝑥 = 2
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2

Quadratic Formula

The quadratic formula is used to solve a quadratic.

(SL 2.7)𝑥 = 𝑏± 𝑏2−4𝑎𝑐
2𝑎

Example (Example 4, C, Page 154):

Solve using the quadratic formula:

5𝑥2 − 2𝑥 − 1 = 0

First find the terms , so Plug and solve𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑎 = 5,  𝑏 =− 2,  𝑐 =− 1.

𝑥 = −2± (−2)2−4×5×−1
2×5

𝑥 = −2± 4+20
10

𝑥 = −2± 24
10

𝑥 = −2±2 6
10

or𝑥 = −1+ 6
5 𝑥 = −1− 6

5
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3

Discriminant Formula

The discriminant formula helps determine whether a quadratic has solutions.

Let us denote that is the discriminant formula.∆

If , then the quadratic has 2 distinct real roots.∆ > 0

If , then the quadratic has 1 real repeated root∆ = 0

If , then the quadratic has no real roots, but 2 complex ones.∆ < 0

(SL 2.7)∆ = 𝑏2 − 4𝑎𝑐

Example (Example 8, Page 158):

Find the values of for which the equation has𝑟 𝑥2 + 3𝑟𝑥 + 1 = 0

a) Two real solutions
b) On real solution
c) No real solutions

A:

𝑏2 − 4𝑎𝑐 > 0
9𝑟2 − 4 × 1 × 1 > 0
𝑟2 > 4

9

𝑟 <− 2
3 ,  𝑟 > 2

3

B:

9𝑟2 − 4 = 0
𝑟2 = 4

9

𝑟 =± 2
3

C:

9𝑟2 − 4 < 0
𝑟2 < 4

9
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𝑟| | < 2
3

− 2
3 < 𝑟 < 2

3

4

Complex numbers

Complex pair is denoted as , where and . The real part𝑧 𝑧 = 𝑎 + 𝑏𝑖 𝑎, 𝑏 ∈ 𝑅 𝑖 ∈ 𝐶
is seen as the of the equation, whilst the imaginary part is seen as .𝑎 𝑏𝑖

The modulus of a complex pair is𝑧

(the distance between the origin and the pair in the real and𝑧| | = 𝑎2 + 𝑏2 𝑧
imaginary plane)

The complex conjugate form of a complex number is denoted as , let𝑧* 𝑧 = 𝑎 + 𝑏𝑖
then . The sign for the complex part swaps.𝑧* = 𝑎 − 𝑏𝑖

5

Rational Roots Theorem
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6

7

8
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Topic 4 Differentiation
1

Introduction to limits

Differentiation is the calculus of limits. Limit is to be thought of the result as
approaching specific value, let's call it . This can be denoted as the following𝑎

𝑥→𝑎
lim 𝑓(𝑥)

The following rules are essential for limit to exist:
The limit exists if and only if and

𝑥→𝑎
lim 𝑓(𝑥) = 𝐿

𝑥→𝑎−
lim = 𝐿

𝑥→𝑎+
lim = 𝐿

Discontinuity at point is not a concern, consider the famous example𝐿

𝑓(𝑥) = sin𝑥
𝑥

There is discontinuity at .𝑥 = 0
However, consider the following graph of :𝑓(𝑥)

Even then, it is evident that limit exists as , because
𝑥→0
lim sin𝑥

𝑥 = 1
𝑥→0+
lim sin𝑥

𝑥 = 1

and .
𝑥→0+
lim sin𝑥

𝑥 = 1
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2

Limits of infinity and asymptotes

Limits can also be used to find asymptotes of graphs. Consider the following
polynomial function defined as𝑓(𝑥)

𝑓(𝑥) = 𝑥2+𝑥+1

𝑥2−𝑥−1

Then, we know that in horizontal asymptotes, .𝑥 → ∞
Hence, consider

𝑥→∞
lim 𝑥2+𝑥+1

𝑥2−𝑥−1

In order to evaluate this, divide everything by 𝑥2

𝑥→∞
lim

1+ 1
𝑥 + 1

𝑥2

1− 1
𝑥 − 1

𝑥2

And evaluating this limit we obtain Which means that at our approaches1. 𝑦 = 1 𝑥
infinity, that is a horizontal asymptote.

In order to find our vertical asymptotes, we can consider parts where our
denominator is not defined. That is, . Hence these are the vertical1± 5

2
asymptotes.

Moreover, it is important to know the following

𝑛→∞
lim (1 + 1

𝑛 )𝑛 = 𝑒

More specifically,

𝑛→∞
lim (1 + 𝑥

𝑛 )𝑦𝑛 = 𝑒𝑥𝑦
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3

Continuity

Continuity of a function is when you actually can draw the function without having
to lift your pen, to simply put. In mathematical terms:
A function is defined to be ‘continuous’ if and only if the following things hold true

, which implies and , where .
𝑥→𝑎
lim = 𝐿

𝑥→𝑎+
lim 𝑓(𝑥) = 𝐿

𝑥→𝑎−
lim 𝑓(𝑥) = 𝐿 𝑓(𝑎) = 𝐿

4

Differentiation

Differentiation is finding the rate of change at an infinitesimal point. Consider the
definition of first principles, which is given by:

ℎ→0
lim 𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ

Derivation:
The average rate of change can be given by

𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎

From the slope formula
𝑦

2
−𝑦

1

𝑥
2
−𝑥

1

Let , thenℎ = 𝑥 − 𝑎 𝑥 = ℎ + 𝑎
Hence we obtain

𝑓(𝑎+ℎ)−𝑓(𝑎)
ℎ

However, since we are looking for the instantaneous rate of change, that is
infinitesimal rate of change, we then want to minimise the gap between . So𝑥 − 𝑎
we evaluate the limit

ℎ→0
lim 𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ

Consider the following diagram:
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It is then possible to see in the diagram that as the gap approaches 0 between the
2 intervals the gradient becomes what it is at that point.

And hence arises some differentiation rules, such as the power rule
Consider from some𝑓(𝑥) = 𝑥𝑛 𝑥 ∈ 𝑍
Then, by first principles

ℎ→0
lim (𝑥+ℎ)𝑛−𝑥𝑛

ℎ

We binomially expand to obtain

ℎ→0
lim

𝑥𝑛+ 𝑛
1( )𝑥𝑛−1ℎ+ 𝑛

2( )𝑥𝑛−2ℎ2+··· −𝑥𝑛

ℎ

Simplifying

ℎ→0
lim 𝑛𝑥𝑛−1 + 𝑛(𝑛−1)

2! 𝑥𝑛−2ℎ +···

Finally we obtain
= 𝑛𝑥𝑛−1

Although I won’t go through the proofs of the following rules, they can be
commonly found in the internet

Chain rule:
or𝑑𝑦

𝑑𝑥 = 𝑑𝑦
𝑑𝑓 × 𝑑𝑓

𝑑𝑥 𝑑(𝑓(𝑔(𝑥))) = 𝑓'(𝑔(𝑥)) × 𝑔'(𝑥)

Product rule:
𝑑(𝑓(𝑥)𝑔(𝑥)) = 𝑓'(𝑥)𝑔(𝑥) × 𝑔'(𝑥)𝑓(𝑥)

Quotient rule:
𝑑( 𝑓(𝑥)

𝑔(𝑥) ) = 𝑔(𝑥)𝑓'(𝑥)−𝑓(𝑥)𝑔'(𝑥)

(𝑔(𝑥))2
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5

Differentiability

Whilst it may be easy to guess that if the limit exists at all points of a function, then
the function is differentiable. This is dire wrong. While it may show differentiability,
it is not a sufficient condition. Consider the famous example:

𝑓(𝑥) = 𝑥| |
At , given that and . However, consider

𝑥→0
lim 𝑓(𝑥) = 0

𝑥→0+
lim 𝑓(𝑥) = 0

𝑥→0−
lim 𝑓(𝑥) = 0

first principles

ℎ→0
lim 𝑥+ℎ| |− 𝑥| |

ℎ

Which leads to

ℎ→0
lim 𝑥| |+ ℎ| |− 𝑥| |

ℎ

Which implies
, notice that whilst , hence limit does not exist.

ℎ→0
lim ℎ| |

ℎ
ℎ→0+
lim ℎ| |

ℎ = 1
ℎ→0−
lim ℎ| |

ℎ =− 1

So at it is not differentiable.𝑥 = 0

Another famous example would be the floor function denoted as

Which looks like the following:

It is not differentiable at any .𝑥 ∈ 𝑍
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6

Tangents and Normals

A tangent of a function is the rate of change of the function at that point, that is
slope . A normal would be , that is a line that intersects a point .𝑚 − 1

𝑚 90◦ 𝑥

Consider the following example:

Example (Page 248, Exercise 4K, 4):

Find the equation of normal to the curve at . This curve is𝑓(𝑥) = 8

4+𝑥2 𝑥 = 1

known as the “Witch of Agnesi”

Let us rewrite as𝑓(𝑥)
𝑓(𝑥) = 8(4 + 𝑥2)−1

Differentiating using the chain rule we obtain
. At we obtain that . However, we are𝑑𝑦

𝑑𝑥 =− 16𝑥(4 + 𝑥2)−2 𝑥 = 1 𝑑𝑦
𝑑𝑥 =− 16

25

looking for the normal, thus . At . And hence, using point slope𝑚 = 25
16 𝑓(1) = 8

5
form we can obtain that
𝑦 − 8

5 = 25
16 (𝑥 − 1)

7

Turning points

Turning points are maximums, minimums and points of inflection of a function.

Lemma 1:
Maximas and minimas of a function are given by
𝑓'(𝑥) = 0

Lemma 2:
at is a necessary but not a sufficient condition to show that at𝑓''(𝑥) = 0 𝑥 = 𝐿

point a point of inflection exists.𝐿

For a point of inflection to exist, it must follow that
𝑓''(𝐿 + ε) =±

, where is a positive small perturbation𝑓''(𝐿 − ε) =∓ ε
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If
𝑓''(𝐿 + ε) =−
𝑓''(𝐿 − ε) =−
Or
𝑓''(𝐿 + ε) =+
𝑓''(𝐿 − ε) =+
Then it is called a point of undulation.

(You may want to consider the graph of where is real number and see𝑥4 − 𝑎𝑥 𝑎
that it there is a point of undulation at ).𝑥 = 0

Lemma 3:
For any at , if𝑓'(𝑥) = 0 𝑥 = 𝐿

, then it is a maximum𝑓''(𝐿) < 0
, then it is a minimum𝑓''(𝐿) > 0

Lemma 4:
Both Lemma 4 and Lemma 2 are sufficient conditions to find the nature of turning
points.

If 𝑓'(𝐿) = 0
And if for 𝑓'(𝐿 + ε) =+
And 𝑓'(𝐿 − ε) =−
For some positive small perturbation ε
Then it follows that at is a minimum𝑥 = 𝐿

If for 𝑓'(𝐿 + ε) =−
And 𝑓'(𝐿 − ε) =+
For some positive small perturbation ε
Then it follows that at is a maximum𝑥 = 𝐿

8

Implicit differentiation

Implicit differentiation is seeing the change of in terms of of a function or a𝑦 𝑥
functional.

There are 2 IB ways of implicitly differentiating and finding the and one non-IB𝑑𝑦
𝑑𝑥

but faster method, if you know the multivariable chain rule of a functional. This will
be covered in bonus material of this ‘flashcard’.

1st IB way (for the proof of this you may want to consider BONUS material just
under this flashcard, as the non-IB way are interlinked with this method):
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For example, let us consider the equation of a unit circle given by ,𝑥2 + 𝑦2 = 1
then by differentiating

For we obtain𝑥2 2𝑥
For we obtain𝑦2 2𝑦 𝑑𝑦

𝑑𝑥
For we obtain1 0

And thus our new equation is
, and solving for2𝑥 + 2𝑦 𝑑𝑦

𝑑𝑥 = 0 𝑑𝑦
𝑑𝑥

𝑑𝑦
𝑑𝑥 = 2𝑥

−2𝑦

2nd IB way
For example, let us consider the equation of a unit circle given by

, then by differentiating𝑥2 + 𝑦2 = 1

For we obtain𝑥2 2𝑥𝑑𝑥
For we obtain𝑦2 2𝑦𝑑𝑦
For we obtain 01

And thus our new equation is
2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 = 0
Solving for 𝑑𝑦

𝑑𝑥
2𝑥𝑑𝑥 =− 2𝑦𝑑𝑦

2𝑥
−2𝑦 = 𝑑𝑦

𝑑𝑥

They are the same thing, however, Method 1 can be significantly easier at times.
Nonetheless, 2nd IB way can also be used to do a lot of proofs which can be found
at the other BONUS section (that is, the end of topic 4).

BONUS

Proof of IB first way and the Non-IB way
Consider the functional

where and are functions of , that is and .𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 = 1 𝑥 𝑦 𝑡 𝑥(𝑡) 𝑦(𝑡)
Then, if we want to find , we can consider for each individual case using𝑑𝑓

𝑑𝑡 (𝑥, 𝑦)
the chain rule

For we obtain𝑥2 2𝑥 𝑑𝑥
𝑑𝑡

For we obtain𝑦2 2𝑦 𝑑𝑦
𝑑𝑡

For we obtain1 0
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And thus, we obtain that
2𝑥 𝑑𝑥

𝑑𝑡 + 2𝑦 𝑑𝑦
𝑑𝑡 = 0

However, notice that if we do and , and we can substitute these∂𝑓
∂𝑥 = 2𝑥 ∂𝑓

∂𝑦 = 2𝑦
in to obtain

∂𝑓
∂𝑥

𝑑𝑥
𝑑𝑡 + ∂𝑓

∂𝑦
𝑑𝑦
𝑑𝑡 = 0

What if, we looked for change in rather than change in ? Then we can just swap𝑥 𝑡
with . So we get (if you were to replace the partials with their values𝑑𝑡 𝑑𝑥

respectively you would achieve the same result as IB method 1. So it is actually
multivariable chain rule in disguise, the total derivative of a functional with respect
to ).𝑥
∂𝑓
∂𝑥

𝑑𝑥
𝑑𝑥 + ∂𝑓

∂𝑦
𝑑𝑦
𝑑𝑥 = 0

Which simplifies to

∂𝑓
∂𝑥 + ∂𝑓

∂𝑦
𝑑𝑦
𝑑𝑥 = 0

Solving for 𝑑𝑦
𝑑𝑥

𝑑𝑦
𝑑𝑥 =−

∂𝑓
∂𝑥
∂𝑓
∂𝑦

Which is evident, test it for yourself for any multivariable equation.

9

Optimisation
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10

Related Rates

11

Sketching Derivatives

12

BONUS

NOTE: ALWAYS USE THE LOGARITHMIC operator to remove exponentialsln
when differentiating, and then implicitly differentiate! Examples can be found for
the proof of below and the power tower in the EXTRAS section.𝑎𝑥

Proof of some standard HL derivatives

Find 𝑑
𝑑𝑥 arcsin 2𝑥

Let 𝑦 = arcsin 2𝑥
Then sin 𝑦 = 2𝑥
Implicitly differentiating to obtain
𝑑(sin 𝑦 = 2𝑥)
𝑑𝑦 × cos 𝑦 = 2𝑑𝑥
Rearranging to obtain
𝑑𝑦
𝑑𝑥 = 2

cos𝑦
We can construct a triangle knowing , where SOH, O and Hsin 𝑦 = 2𝑥 = 2𝑥 = 1
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Hence we can obtain cos 𝑦

cos 𝑦 = 1−4𝑥2

1
Substituting back into our equation
𝑑𝑦
𝑑𝑥 = 2

1−4𝑥2

This method can always be used to prove standard derivatives.

Find 𝑑
𝑑𝑥 𝑎𝑥

Let 𝑦 = 𝑎𝑥

Using ln operator
ln 𝑦 = 𝑥 ln 𝑎
Implicitly differentiating
𝑑𝑦
𝑦 = 𝑑𝑥 ln 𝑎
Rearranging
𝑑𝑦
𝑑𝑥 = 𝑦 ln 𝑎
Substituting back in𝑦
𝑑𝑦
𝑑𝑥 = 𝑎𝑥 ln 𝑎

Find 𝑑
𝑑𝑥 log

𝑎
𝑥

Using change of base to get ln𝑥
ln𝑎

Differentiating to obtain
𝑑

𝑑𝑥
ln𝑥
ln𝑎

= 1
𝑥ln𝑎
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Topic 5 Statistics and Probability
1
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2

The quadratic formula is used to solve a quadratic.
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3

4

5

6
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7
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Topic 6 Trigonometry
1
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2

The quadratic formula is used to solve a quadratic.
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3

4

5

6
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7
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Topic 7 Exponents, Logarithms
and Integration

1

Introduction to integrals

Integrals, or anti-derivatives, allows you to do the opposite of differentiation. It can
be used to find, for example, the area of something under a graph by defining
limits.

Generalisations include but are not limited to the following:

(Not in the formula booklet)∫ 𝑓(𝑥) ± 𝑔(𝑥) = ∫ 𝑓(𝑥) ± ∫ 𝑔(𝑥)

(SL 5.5)∫ 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1

𝑛+1 + 𝐶

where and where are∫(𝑓(𝑥) + 𝑏)𝑛 𝑑𝑥 = (𝑓(𝑥)+𝑏)𝑛+1

𝑓'(𝑥)×(𝑛+1) + 𝐶 𝑓(𝑥) = 𝑎𝑥𝑛 𝑎, 𝑛

constants (Not in the formula booklet)

(SL 5.10)∫ 1
𝑥 𝑑𝑥 = ln 𝑥| | + 𝐶

(SL 5.10)∫ sin 𝑥 𝑑𝑥 =− cos 𝑥 + 𝐶

(SL 5.10)∫ cos 𝑥 𝑑𝑥 = sin 𝑥 + 𝐶

(SL 5.10), however . (Not in the∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝐶 ∫ 𝑒𝑓(𝑥)𝑑𝑥 = 𝑒𝑓(𝑥)

𝑓'(𝑥) + 𝐶

formula booklet).
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(HL 5.15)∫ 𝑎𝑥𝑑𝑥 = 1
ln𝑎 𝑎𝑥 + 𝐶

(HL 5.15)∫ 1

𝑎2+𝑥2 𝑑𝑥 = 1
𝑎 arctan ( 𝑥

𝑎 ) + 𝐶

(HL 5.15)∫ 1

𝑎2−𝑥2
= arcsin ( 𝑥

𝑎 ) + 𝐶,  𝑥| | < 𝑎

or (HL 5.16)∫ 𝑢 𝑑𝑣
𝑑𝑥 𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

𝑑𝑥 𝑑𝑥 ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢

(Not stated as an integral, found in (HL 5.15))∫ sec2𝑥 𝑑𝑥 = tan 𝑥

(Not stated as an integral, found in (HL 5.15))∫ sec 𝑥 tan 𝑥 𝑑𝑥 = sec 𝑥

(Not stated as an integral, found in (HL 5.15))∫− csc 𝑥 cot 𝑥 = csc 𝑥

(Not in the formula booklet)∫ 𝑓'(𝑥)
𝑓(𝑥) = ln(𝑓(𝑥)) + 𝐶

It is also important to use trigonometric identities when solving integrals. It is
especially important to note that should be changed to whenever possibletan sec
because of its nature.

integral questions should go through a base change to , in order to make thelog 𝑒
question solvable by rules.ln

questions should make and do integration by substitution. After𝑛𝑓(𝑥) 𝑢 = 𝑓(𝑥)
getting the integral , apply AHL 5.15 for .𝑛𝑢 𝑎𝑥
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It is very important that if stumbled upon an or , then use the double∫ cos2𝑥 ∫ sin2𝑥

angle identity to change it to otherwise integration is not possible!! (It is butcos 2𝑥
not with IB knowledge, reduction formula)

If dealing with an integral with a large polynomial on the denominator, look into
factorising and then apply partial fractions. If it cannot be factored, put it into vertex
form and then apply a trigonometric substitution.

Example (Exercise 7A, Page 451, 12):

Given that find the function given that𝑓'(θ) = 4 sin(θ + π
4 ) cos(θ + π

4 ) 𝑓(θ)
𝑓(0) = 1.

We first use the identity that , hence we getsin(2θ) = 2 sin θ cos θ

2 sin(2θ + π
2 )

We integrate to get 𝑓(θ)

∫ 2 sin(2θ + π
2 ) =− cos(2θ + π

2 ) + 𝐶

Hence, we equate the answer to 0 to find .θ

− cos(2(0) + π
2 ) + 𝐶 = 1

− cos( π
2 ) + 𝐶 = 1

𝐶 = 1

Thus the answer is

− cos(2θ + π
2 ) + 1
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2

Finding areas of graphs using integrals and definite integrals

Areas of graphs using integrals can be found by defining the upper and lower
boundaries, and then adding them.

𝑎

𝑏

∫ 𝑓'(𝑥)| | = [ 𝑓(𝑥)| |]
𝑏

𝑎

, where= 𝑓(𝑎)| | − 𝑓(𝑏)| | 𝑎 < 𝑏

Example (Example 8, Page 458):

a) Factorise the expression 2 − 𝑥 − 2𝑥2 + 𝑥3

b) Hence sketch the graph 𝑓(𝑥) = 2 − 𝑥 − 2𝑥2 + 𝑥3

c) Find the area of the region bounded by the graph 𝑓(𝑥) = 2 − 𝑥 − 2𝑥2 + 𝑥3

and the axis.𝑥

A.
(1 − 𝑥)(1 + 𝑥)(2 − 𝑥)

B.
Roots at 𝑥 = 1, − 1, 2
intercept at𝑦 2, 0

Because the coefficient of is positive, that means it follows the S shape where𝑥3

the left side begins from negative y numbers
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C.

−1

1

∫ 2 − 𝑥 − 2𝑥2 + 𝑥3 +
1

2

∫ 2 − 𝑥 − 2𝑥2 + 𝑥3||||

||||

[2𝑥 − 𝑥2

2 − 2𝑥3

3 + 𝑥4

4 ]
−1

1 + [2𝑥 − 𝑥2

2 − 2𝑥3

3 + 𝑥4

4 ]
1

2|||
|||

LHS

[2𝑥 − 𝑥2

2 − 2𝑥3

3 + 𝑥4

4 ]
−1

1

= (2(1) − (1)2

2 − 2(1)3

3 + (1)4

4 ) − (2(− 1) − (−1)2

2 − 2(−1)3

3 + (−1)4

4 )

= 13
12 − (− 19

12 )

= 8
3

RHS

[2𝑥 − 𝑥2

2 − 2𝑥3

3 + 𝑥4

4 ]
1

2|||
|||

= (2(2) − (2)2

2 − 2(2)3

3 + (2)4

4 ) − (2(1) − (1)2

2 − 2(1)3

3 + (1)4

4 )

= 2
3 − 13

12 =− 5
12

because, obviously, the area of something cannot be negative as− 5
12

|| || = 5
12

we’re calculating the total area.

Thus,

8
3 + 5

12 = 37
12
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3

Exponents and Logarithms

General rules of logarithms

(SL 1.7)log
𝑎
𝑥𝑦 = log

𝑎
𝑥 + log

𝑎
𝑦

(SL 1.7)log
𝑎

𝑥
𝑦 = log

𝑎
𝑥 − log

𝑎
𝑦

(SL 1.7)log
𝑎
𝑥𝑚 = 𝑚log

𝑎
𝑥

(SL 1.7) where , you choose any numberlog
𝑎
𝑥 =

log
𝑏
𝑥

log
𝑏
𝑎 𝑏 ∈ 𝑅

then (SL 1.5)𝑎𝑥 = 𝑏, 𝑥 = log
𝑎
𝑏

Example 1 (Example 13, Page 463):

The value of a sailing boat depreciates at a rate of 15% per year for the first three
years. After that, the rate of depreciation stays constant. A new boat costing𝑟%
$60,000 is worth one fifth of its original value after 15 years. Find:

a. The value of the boat, to the nearest dollar, after three years

b. The rate of depreciation after the three years of purchase.

A.

60000 × 0. 853 = $36848

B.

36848 × 𝑛12 = 12000

𝑛 = 12 12000
36848 = 0. 9107

Hence the rate of depreciation is ≃ 8. 93%
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Example 2 (Example 11, Page 462):

Solve 2𝑥 − 22−𝑥 = 3

2𝑥 − 22 × 2−𝑥 = 3

2𝑥 − 22

2𝑥 = 3

(2𝑥)2 − 4 = 3 × 2𝑥

(2𝑥)2 − 3(2𝑥) − 4 = 0

Let α = 2𝑥

α2 − 3𝑎 − 4 = 0

(α + 1)(α − 4) = 0

Powers cannot make a number equal negative, thus the only solution is when
α = 4

2𝑥 = 4

𝑥 = 2

Example 4 (Example 21, Page 469):

Solve the following questions

a. log
15

𝑥 + log
15

(2𝑥 − 1) = 1,  𝑥 > 0

b. log
4
𝑥 + log

4
(𝑥 − 6) = 2,  𝑥 > 0

A.
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log
15

(𝑥(2𝑥 − 1)) = 1

log
15

(𝑥(2𝑥 − 1)) = log
15

15

Divide both sides by log
15

2𝑥2 − 𝑥 = 15

2𝑥2 − 𝑥 − 15 = 0

(2𝑥 + 5)(𝑥 − 3)

,since we cannot have a negative answer𝑥 = 3

OR

log
15

(𝑥(2𝑥 − 1)) = 1

Putting in regular form

151 = 2𝑥2 − 𝑥

0 = 2𝑥2 − 𝑥 − 15

(2𝑥 + 5)(𝑥 − 3)

,since we cannot have a negative answer∴𝑥 = 3

B.

log
4
(𝑥(𝑥 − 6)) = 2

, because 1=log
4
(𝑥(𝑥 − 6)) = 2log

4
4 log

𝑎
𝑎

log
4
(𝑥(𝑥 − 6)) = log

4
16

Divide by log
4
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𝑥2 − 6𝑥 − 16 = 0

(𝑥 + 2)(𝑥 − 8)

, since we cannot have a negative answer∴𝑥 = 8

OR

log
4
(𝑥(𝑥 − 6)) = 2

Putting into regular form we get

42 = 𝑥2 − 6𝑥

0 = 𝑥2 − 6𝑥 − 16

(𝑥 + 2)(𝑥 − 8)

, since we cannot have a negative answer.∴𝑥 = 8

Example 5 (Example 23, Page 471):

Calculate the number of terms that are required for the sum of the geometric series
given by

𝑖=1

𝑛

∑ 3 × 2𝑖 > 1000

𝑟 = 2
𝑢

1
= 6

Sum of geometric series is given by

𝑆
𝑛

= 6(2𝑛−1)
2−1 > 1000

𝑆
𝑛

= 2𝑛 > 1000
6 − 1
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𝑛 > log
2
( 1000

6 − 1)

4

Exponential Graphs

Important: If the graph has an asymptote at the x axis, then it is an exponential
graph. If the graph has an asymptote at the y axis, then it is a logarithmic graph.

Exponential and logarithmic graphs have special properties.

graph has an asymptote at at because the power cannot transform𝑦 = 𝑒𝑥 𝑦 = 0
the into a or negative numbers.𝑒 0

If the turns into a , then the graph follows a translation of a reflection in the𝑥 − 𝑥 𝑦
axis. Furthermore, if the coefficient of is then it could be expressed in𝑥 < 1, − 𝑥
power form, as such the graph is also a reflection of an graph.𝑎𝑥
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Logarithmic graphs are exponential graphs that undergo a reflection over the
function.𝑦 = 𝑥

The graph shown above expresses and otherwise as .𝑦 = 𝑒𝑥 𝑦 = log
𝑒
𝑥 ln 𝑥

Logarithmic graphs have an asymptote at because, if thought about it, is𝑥 = 0 𝑥
the answer of a question and cannot be negative or 0 because powers𝑥 = 𝑒𝑦 𝑥
cannot transform the result into a negative or 0.

5

Integration by inspection

Integration by inspection is a process of first deriving the integral and seeing the
difference it creates if you were to integrate it.

This is mainly done by reverse chain rule, where

𝑑
𝑑𝑥 (𝑓(𝑔(𝑥))) = 𝑓'(𝑔(𝑥)) × 𝑔'(𝑥) ⇒ ∫ 𝑓'(𝑔(𝑥)) × 𝑔'(𝑥) 𝑑𝑥 = 𝑓(𝑔(𝑥)) +

(Not in the formula booklet)

Example 1 (Example 34, Page 492):

Find the following integrals by inspection.
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∫ sin π𝑥
2 𝑑𝑥

We let the functions be defined as
𝑓(𝑢) = cos(𝑢),  𝑔(𝑥) = π𝑥

2

Using reverse chain rule we get
𝑓'(𝑔(𝑥)) × 𝑔'(𝑥) =− 2

π ×− cos( π𝑥
2 ) × π

2 = sin( π𝑥
2 )

(This method is really confusing and inefficient when working out in paper, this can
be otherwise solved as knowing that when you derive or , we multiply bysin 𝑥 cos 𝑥
the derivative of the inside. We can do it the opposite, integrate the orsin 𝑥 cos 𝑥
and afterwards divided by the derivative inside.)

Example 2 (Example 36, Page 493):

Integrate

∫ sin 𝑥 cos4𝑥 𝑑𝑥

We let the initial function be defined as

𝑓(𝑥) = cos5𝑥 = (cos 𝑥)5

Deriving we get

𝑓'(𝑥) = 5 ×− sin 𝑥 × (cos 𝑥)4 =− 5 sin 𝑥 cos4𝑥

Thus by deriving we get and know that the difference is , hence we add it to− 1
5

the original , thus the answer is𝑓(𝑥).

− 1
5 cos5𝑥
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6

Integration by substitution

Integration by inspection is a process of first deriving the integral and seeing the
difference it creates if you were to integrate it.

Example 1 (Example 39, Page 497):

Find the following integrals using appropriate substitution:

a. ∫ 3(6𝑥 − 1)𝑒3𝑥2−𝑥 𝑑𝑥

b. ∫ cot 𝑥 𝑑𝑥

A.

∫ 3(6𝑥 − 1)𝑒3𝑥2−𝑥 𝑑𝑥

Let , then𝑢 = 3𝑥2 − 𝑥
, otherwise as , substituting in we get𝑑𝑢

𝑑𝑥 = 6𝑥 − 1 𝑑𝑢 = (6𝑥 − 1)𝑑𝑥

3∫ 𝑒𝑢𝑑𝑢 = 3𝑒𝑢

Substituting the back in we get𝑢

3𝑒3𝑥2−𝑥

B.
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∫ cot 𝑥 𝑑𝑥 = ∫ cos𝑥
sin𝑥 𝑑𝑥

Let , then𝑢 = sin 𝑥
, otherwise as , substituting in we get𝑑𝑢

𝑑𝑥 = cos 𝑥 𝑑𝑢 = cos 𝑥 𝑑𝑥

∫ 1
𝑢 𝑑𝑢 = ln 𝑢| | + 𝐶

Substituting the back in we get𝑢

ln sin 𝑥| | + 𝐶

Example 2 (Example 42, Page 499):

Find .∫ 3𝑥𝑑𝑥

Knowing that , we can rewrite the equation as𝑒ln𝑘 = 𝑘 ∫ 𝑒ln3𝑥

∫ 𝑒𝑥ln3

Let , then𝑢 = 𝑥 ln 3 𝑑𝑢
ln3 = 𝑑𝑥

Substituting back in we get

1
ln3 ∫ 𝑒𝑢𝑑𝑢

1
ln3 × 𝑒𝑢 + 𝐶

Substituting back in we get𝑢

1
ln3 × 𝑒ln3𝑥

+ 𝐶

1
ln3 × 3𝑥 + 𝐶
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3𝑥

ln3 + 𝐶
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7

Integration by parts

Integration by parts is integrating by choosing one part and other part by , and𝑢 𝑑𝑣
𝑑𝑢

differentiating the whilst integrating . You should always choose as a part𝑢 𝑑𝑣
𝑑𝑢 𝑢

that is not repeated, i.e but not or for example, because these functions𝑥 𝑒𝑥 sin 𝑥
will repeat. It is also the product rule but in integral form.

(AHL 5.16)𝑢𝑣 − ∫ 𝑣 𝑑𝑢
𝑑𝑥 𝑑𝑥

Example 1 (Example 45, Page 506):

Find the integral ∫ ln 𝑥 𝑑𝑥

We first rewrite as

, hence∫ ln 𝑥 × 1 𝑑𝑥

Let , then𝑢 = ln 𝑥,  𝑑𝑣
𝑑𝑥 = 1

𝑑𝑢
𝑑𝑥 = 1

𝑥 ,  𝑣 = 𝑥

As such, applying the integration by parts rule, we get:

𝑥 ln 𝑥 − ∫ 𝑥 1
𝑥 𝑑𝑥

Integrating we get

𝑥(ln 𝑥 − 1) + 𝐶

Example 2 (Example 46, Page 506):

Find the integral ∫ arccos 𝑥 𝑑𝑥

We first rewrite as
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∫ arccos 𝑥 × 1 𝑑𝑥

Let , then𝑢 = arccos 𝑥,  𝑑𝑣
𝑑𝑥 = 1

𝑑𝑢
𝑑𝑥 = 1

1−𝑥2,
 𝑣 = 𝑥

As such, applying the integration parts rule, we get:

𝑥 arccos 𝑥 − ∫ 𝑥

1−𝑥2
𝑑𝑥

Let , then𝑢 = 1 − 𝑥2

𝑑𝑢
−2 = 𝑥 𝑑𝑥

Substituting we get

𝑥 arccos 𝑥 − 1
2 ∫ 𝑢

− 1
2 𝑑𝑢

𝑥 arccos 𝑥 − 1
2 (2𝑢

1
2 )

𝑥 arccos 𝑥 − 1
2 (2(1 − 𝑥2)

1
2 )

𝑥 arccos 𝑥 − 1 − 𝑥2 + 𝐶

Example 3 (Exercise 7J, 5, Page 507):

Find ∫( 1+2𝑥
3 )sec2 𝑥

2  𝑑𝑥

Let , then𝑢 = 1+2𝑥
3 ,  𝑑𝑣

𝑑𝑥 = sec2 𝑥
2

𝑑𝑢
𝑑𝑥 = 2

3 ,  𝑣 = 2 tan 𝑥
2

As such, applying the integration by parts rule, we get:

1+2𝑥
3 × 2 tan 𝑥

2 − ∫ 2
3 × 2 tan 𝑥

2 𝑑𝑥

1+2𝑥
3 × 2 tan 𝑥

2 − ∫ 4
3 tan 𝑥

2 𝑑𝑥

1+2𝑥
3 × 2 tan 𝑥

2 − 4
3 ∫

sin 𝑥
2

cos 𝑥
2

𝑑𝑥
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Let , then𝑢 = cos 𝑥
2

𝑑𝑢
𝑑𝑥 =− 1

2 sin 𝑥
2

− 2𝑑𝑢 = sin 𝑥
2 𝑑𝑥

Substituting back in we get

1+2𝑥
3 × 2 tan 𝑥

2 + 8
3 ∫ 1

𝑢 𝑑𝑢

1+2𝑥
3 × 2 tan 𝑥

2 + 8
3 ln 𝑢| |

1+2𝑥
3 × 2 tan 𝑥

2 + 8
3 ln(cos 𝑥

2 ) + 𝐶

Example 4 (Exercise 7J, 12, Page 507):

Find ∫ log
𝑎
𝑥

Using change of base formula we get

log
𝑎
𝑥 = ln𝑥

ln𝑎
Hence

∫ ln𝑥
ln𝑎 = 1

ln𝑎 ∫ ln 𝑥

1
ln𝑎 ∫ 1 × ln 𝑥

Let , then𝑢 = ln 𝑥,  𝑑𝑣
𝑑𝑥 = 1

𝑑𝑢
𝑑𝑥 = 1

𝑥 ,  𝑣 = 𝑥

As such, applying the integration by parts rule, we get:

𝑥 ln 𝑥 − ∫ 𝑥
𝑥 𝑑𝑥

𝑥 ln 𝑥 − 𝑥 + 𝐶 = 𝑥(ln 𝑥 − 1) + 𝐶

As such, applying this integral in the original equation we get:

𝑥(ln𝑥−1)
ln𝑎 + 𝐶
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Example 5 (Exercise 7J, 7, Page 507):

Find ∫ 𝑥

3𝑥  𝑑𝑥

Let , then𝑢 = 𝑥,  𝑑𝑣
𝑑𝑥 = 3−𝑥

𝑑𝑢
𝑑𝑥 = 1,  𝑣 = ∫ 3−𝑥

To find , we let then , hence𝑣 𝑢 =− 𝑥, 𝑑𝑢
𝑑𝑥 =− 1

then− ∫ 3𝑢𝑑𝑢,

, going back to the original equation and applying integration by parts we− 3𝑢

ln3
get:

− 3−𝑥

ln3 × 𝑥 − ∫− 3−𝑥

ln3

, using our previous answer we get− 3−𝑥

ln3 × 𝑥 + 1
ln3 ∫ 3−𝑥

− 3−𝑥

ln3 × 𝑥 + 1
ln3 (− 3−𝑥

ln3 )

− 3−𝑥

ln3 (𝑥 + 1
ln3 ) + 𝐶
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8

Cyclic integration

Cyclic integration happens when the function keeps repeating itself when
integrated by parts. This happens because it is defined by parts such as ,𝑒𝑥 sin 𝑥
etc.

Example (Exercise 7L, 1, Page 509):

Find ∫ tan 𝑥 sec2𝑥 𝑑𝑥

We first equate 𝐼 = ∫ tan 𝑥 sec2𝑥 𝑑𝑥

Let , then𝑢 = tan 𝑥,  𝑑𝑣
𝑑𝑥 = sec2𝑥

𝑑𝑢
𝑑𝑥 = sec2𝑥,  𝑣 = tan 𝑥

, hence we substitute in , thus𝐼 = tan2𝑥 − ∫ tan 𝑥 sec2𝑥 𝑑𝑥 𝐼

𝐼 = tan2𝑥 − 𝐼

𝐼 = 𝑡𝑎𝑛2𝑥
2
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8

BONUS

Hyperbolic substitution

Knowing the following:

𝑘=0

∞

∑ 𝑥2𝑘

(2𝑘)! = cosh 𝑥 = 𝑒𝑥+𝑒−𝑥

2

𝑘=0

∞

∑ 𝑥2𝑘+1

(2𝑘+1)! = sinh 𝑥 = 𝑒𝑥−𝑒−𝑥

2

Then, the identity follows true:

cosh2(𝑥) − sinh2(𝑥) = 1

This can be exploited in substitution.
Specifically

Example 1 (UPenn Course):
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Sol 1, using tan sub
Completing the square to get

∫ 1

(𝑥−3)2+1
𝑑𝑥

Using tan sub
𝑥 − 3 = tan 𝑢
𝑑𝑥 = sec2𝑢 𝑑𝑢

∫ sec2𝑢

sec2𝑢
𝑑𝑢

∫ sec 𝑢 𝑑𝑢 = ln sec 𝑢 + tan 𝑢| |

= ln 𝑥 − 3 + 𝑥2 − 6𝑥 + 10
|
|
|

|
|
|

+ 𝐶

Sol 2, using sinh sub
Completing the square to get

∫ 1

(𝑥−3)2+1
𝑑𝑥

Using sinh sub
𝑥 − 3 = sinh 𝑢
𝑑𝑥 = cosh 𝑢 𝑑𝑢

Substituting

∫ cosh𝑢

sinh2𝑥 +1
𝑑𝑢

Using identity cosh2𝑥 − sinh2𝑥 = 1

∫ cosh𝑢
cosh𝑢 𝑑𝑢

= 𝑢 + 𝐶
= 𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥 − 3) + 𝐶

Generalisation (use only when the original form of tan has a square root):
Identity cosh2𝑥 − sinh2𝑥 = 1
Use sub if in the form, wheresinh 𝑥 = 𝑎 sinh 𝑢
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1

𝑥2+𝑎2

Use sub if in the form, wherecosh 𝑥 = 𝑎 cosh 𝑢
1

𝑥2−𝑎2

And remember that and , where signs do not𝑑
𝑑𝑥 sinh 𝑥 = cosh 𝑥 𝑑

𝑑𝑥 cosh 𝑥 = sinh 𝑥
alternate.
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Topic 8 Advanced Calculus
1

Finding area between 2 graphs

Finding the area between graphs is simple and intuitive. One needs to refine the
new axis that the person wants to find the area. This is done by taking the upper𝑦
graph and then subtracting it from the bottom graph with defined limits.

Example 1 (UPenn Course):

Find the area inscribed between and𝑥 𝑥2

Let us first find the intersection points, one of which is obviously .0
𝑥 = 𝑥2

𝑥 = 𝑥4

1 = 𝑥3

𝑥 = 1

Hence, the limits are and 1.0

Knowing that approaches infinity faster in the interval of and we can deduce𝑥 0 1
that it is on top. (e.g. whilst . One gets smaller, other gets0. 12 = 0. 01 0. 01 = 0. 1
bigger for such intervals).

A visual graph for aid:
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In order to find the area, we must minus the non-relevant bit (which is the bottom
part of , hence𝑥2

𝑥 − 𝑥2

This will give us a new graph, with a new set of axis as a result of subtraction:𝑦

Hence, the area will be

0

1

∫( 𝑥 − 𝑥2)𝑑𝑥

Evaluating to get
1
3
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2

Volumes and Volumes of revolution

Volumes of revolution is a method of having a function and then rotating it about
360 degrees in order to obtain a 3D volume of an object.

This works because of the formula , in which is replaced with the function,π𝑟2 𝑟
depending whether it is about the or the axis. This allows to evaluate an𝑥 𝑦 𝑟
which is the area between given intervals.

Example 1 (Example 6, Page 526):

Find the volume of the solid formed when the region when the region between the

two curves and is rotated about𝑓(𝑥) = 𝑥
2 𝑔(𝑥) = 𝑥2

4 2π

a. The axis𝑥
b. The axis𝑦

A.

One should note that is an obvious solution to𝑥 = 0 𝑓(𝑥) = 𝑔(𝑥)

Moreover, equating the two to obtain our other intersection
𝑥
2 = 𝑥2

4
𝑥
2 = 𝑥4

16



Mathematics Flash Cards: Analysis & Approaches Higher Level

8 = 𝑥3

𝑥 = 2

Hence, we can then deduce that

∫ 𝑑𝑉 = 2π
0

2

∫( 𝑥
2 )2 − ( 𝑥2

4 )2 𝑑𝑥

𝑉 = 𝑥2

4 − 𝑥5

80
⎡⎢⎣

⎤⎥⎦ 0
2

𝑉 = 3
5 π 𝑐𝑢𝑏𝑖𝑐 𝑢𝑛𝑖𝑡𝑠

B.

For the axis, we will have to make the subject in each.𝑦 𝑥

2𝑦2 = 𝑥
2 𝑦 = 𝑥

To calculate the boundaries we just put our x boundaries and solve for y

2𝑦2 = 0,  𝑦 = 0
2𝑦2 = 2,  𝑦 = 1

We know that when inspected through the axis we know that𝑦 𝑥2

2 > 𝑥
2

Hence

∫ 𝑑𝑉 = π
0

1

∫(2 𝑦)2 − (2𝑦2)2𝑑𝑦

𝑉 = π 2𝑦2 − 4
5 𝑦5⎡

⎣
⎤
⎦ 0

1

𝑉 = 6π
5  𝑐𝑢𝑏𝑖𝑐 𝑢𝑛𝑖𝑡𝑠

Example 2 (Example 5, Page 526):

Find the volume enclosed by the region between the graphs of and the𝑦 = 𝑥2+1
2

line , by radians.𝑦 = 3 2π

We know that the upper limit is . Let us find the minima so we can determine the3
lower boundary.

, so minima has𝑑𝑦
𝑑𝑥 = 𝑥 = 0 (0, 𝑦)
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Plugging in to find 𝑦
𝑦 = 0. 5

Thus, knowing the formula for surfaces of revolution and making the subject to𝑥
obtain

2𝑦 − 1

∫ 𝑑𝑉 = π
0.5

3

∫ ( 2𝑦 − 1)2

= 6. 25π 𝑐𝑢𝑏𝑖𝑐 𝑢𝑛𝑖𝑡𝑠
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3

Taylor & Maclaurin Series

Taylor and Maclaurin series is a way of expressing functions as a polynomial. It is
good for approximation. The higher the degree found, the better approximation
derived.

When discovering Maclaurin series, Maclaurin realised the following:

In the first iteration, this polynomial, let's call it , is only known to share𝑃(𝑥) = sin 𝑥
the same y-intercept, but after the second iteration, it has the same gradient there
too, and after the third, it has the same "rate of change of gradient" or acceleration,
and then after blah blah and so on and so forth.

It is possible to compute 2 different Taylor/Maclaurin series and then multiply/apply
them together if a question is in the appropriate form. See example 1.

Proof of Maclaurin

Let an infinite polynomial be defined as the following:𝑓(𝑥)

𝑓(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒𝑥4 +...

where and denote the coefficient of the degree of the polynomial.𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝑅 𝑛

Notice that, if we substitute , then we can find𝑥 = 0 𝑎.
𝑓(0) = 𝑎

Let us differentiate the function.

𝑓'(𝑥) = 𝑏 + 2(𝑐𝑥) + 3(𝑑𝑥2) + 4(𝑒𝑥3) +...

Notice that, if we substitute , then we can find .𝑥 = 0 𝑏
𝑓'(0) = 𝑏

Let us differentiate .𝑓'(𝑥)

𝑓''(𝑥) = 2𝑐 + 3 × 2(𝑑𝑥) + 4 × 3(𝑒𝑥2) +...

Notice that, if we substitute , then we can find .𝑥 = 0 𝑐
𝑓''(0) = 2𝑐,  𝑓''(0)

2 = 𝑐

Let us differentiate .𝑓''(𝑥)
𝑓'''(𝑥) = 3 × 2(𝑑) + 4 × 3 × 2(𝑒𝑥) +...
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Notice that, if we substitute , then we can find .𝑥 = 0 𝑑
𝑓'''(0) = 3 × 2(𝑑),  𝑓'''(0)

3! = 𝑑

Let us differentiate .𝑓'''(𝑥)
𝑓4(𝑥) = 4 × 3 × 2(𝑒) +...

Notice that, if we substitute , then we can find .𝑥 = 0 𝑒

𝑓4(0) = 4 × 3 × 2(𝑒),  𝑓4(0)
4! = 𝑒

And the list continues. Now substitute our derived definitions of into𝑎, 𝑏, 𝑐, 𝑑, 𝑒 𝑓(𝑥)
to obtain

𝑓(𝑥) = 𝑓(0) + 𝑓'(0)𝑥 + 𝑓''(0)
2! 𝑥2 + 𝑓'''(0)

3! 𝑥3 +... + 𝑓𝑛(0)
𝑛! 𝑥𝑛

Where and lists in ascending order.𝑛 ∈ 𝑁

(AHL 5.19)𝑓(𝑥) = 𝑓(0) + 𝑥 𝑓'(0) + 𝑥2

2! 𝑓''(0) +...

However, do carefully notice that this allows for a good approximation at .𝑥 = 0
What if ?𝑥 = 𝑎

Then we can apply translations to our generalisation.

𝑓(𝑥) = 𝑓(𝑎) + 𝑓'(𝑎)(𝑥 − 𝑎) + 𝑓''(𝑎)
2! (𝑥 − 𝑎)2 + 𝑓'''(𝑎)

3! (𝑥 − 𝑎)3 +... + 𝑓𝑛(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

This is the Taylor series.

This is not required for the syllabus, but it is good to know. (I wish I had a series
named after me at )𝑥 = 1

Example 1 (from a Coursera UPenn course):

Find the Maclaurin expansion of up to the 4th degree.𝑒1−cos𝑥

First find the Maclaurin of to the 4th degree.1 − cos 𝑥

𝑓(0) = 0
𝑓'(𝑥) = sin 𝑥,  𝑓'(0) = 0
𝑓''(𝑥) = cos 𝑥,  𝑓''(0) = 1
𝑓'''(𝑥) =− sin 𝑥,  𝑓'''(0) = 0
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𝑓4(𝑥) =− cos 𝑥,  𝑓4(0) =− 1

Therefore

𝑒
1
2! 𝑥2− 1

4! 𝑥4+...

Computing Maclaurin for 𝑒𝑥

= 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + 𝑥4

4! ...

Substituting in for from our previously computed Maclaurin𝑥

= 1 + ( 1
2! 𝑥2 − 1

4! 𝑥4) +
( 1

2! 𝑥2− 1
4! 𝑥4)2

2!

= 1 + ( 1
2! 𝑥2 − 1

4! 𝑥4) +
1
4 𝑥4

2

= 1 + 1
2 𝑥2 − 1

24 𝑥4 + 3
24 𝑥4

= 1 + 1
2 𝑥2 + 1

12 𝑥4

Otherwise, it is possible, for example, to split the function into 2 and then find the
Maclaurin/Taylor for both and then multiply each other.
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4

Limits using Taylor

Limits can also be done using Taylor. This is especially useful for equations which
are cyclic in l’Hopital, i.e. differentiating does not help.

For example (from UPenn course):
(this can also be solved by l’Hopital, but is much more tedious)

𝑥→0
lim 𝑒𝑥2

−1
1−cos𝑥

Computing taylor series for each

cos 𝑥 = 1 − 𝑥2

2! +...

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! +...

𝑒𝑥2

= 1 + 𝑥2 + 𝑥4

4

Substituting back in

𝑥→0
lim

(1+𝑥2+ 𝑥4

4 +...)−1

1−(1− 𝑥2

2! +...)

𝑥→0
lim

𝑥2+ 𝑥4

4 +...
𝑥2

2! +...

𝑥→0
lim

𝑥2(1+ 𝑥2

4 +...)

𝑥2( 1
2 +...)

𝑥→0
lim 1

1
2

= 2
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5

l’Hopital’s Rule

l’Hopital states that the limit of a continuous function can be found by differentiating
if given in the form

, where or , then one can obtain the limit by differentiating
𝑥→𝑎
lim 𝑓(𝑥)

𝑔(𝑥) 𝑥→𝑎
lim 0

0 𝑥→𝑎
lim ∞

∞

continuously i.e. until such that or is now applicable in limits..
𝑥→𝑎
lim 𝑓'(𝑥)

𝑔'(𝑥) 𝑓(𝑥) 𝑔(𝑥)

If it is cyclic (no matter how many times it is differentiated, will always obtain 0/0),
then it is better to evaluate using Taylor.
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Example (From a UPenn Course):

Evaluate
𝑥→1
lim

cos( 𝑥π
2 )

𝑥−1

Consider , then𝑓(𝑥) = cos( 𝑥π
2 ) 𝑓'(𝑥) =− π

2 sin( 𝑥π
2 )

At 𝑓'(1) =− π
2

Consider , then𝑔(𝑥) = 𝑥 − 1 𝑔'(𝑥) = 1
2

1
𝑥

At .𝑔'(𝑥) = 1
2

Hence

𝑥→1
lim

− π
2

1
2

=− π
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6

Separable Autonomous Ordinary Differential Equations

Ordinary differential equations are used to model specific types of things. It is
important to get differentials to their unknowns respectively in order to solve.

Separable Autonomous Ordinary Differential Equations are equations which follow
the form
𝑑𝑥
𝑑𝑡 = 𝑓(𝑥)

Example 1 (UPenn Course):

Let us rearrange the equation such that
𝑑𝑇

𝐴−𝑇 = 𝑘𝑑𝑡

Integrating

∫ 𝑑𝑇
𝐴−𝑇 = ∫ 𝑘𝑑𝑡

− ln(𝐴 − 𝑇) = 𝑘𝑡 + 𝐶

Putting everything to the power of 𝑒
1

𝐴−𝑇 = 𝑒𝑘𝑡+𝐶

, since is the initial condition, or rather, the y intercept we can1
𝐴−𝑇 = 𝑒𝑘𝑡 × 𝑒𝐶 𝑒𝐶

denote it as 𝑦
0

1
𝐴−𝑇 = 𝑦

𝑜
𝑒𝑘𝑡
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Knowing that initial temperature is we can substitute for212◦𝐹 𝑇
We also know and since this is initial condition,𝐴 = 32 𝑡 = 0

1
32−212 = 𝑦

0

𝑦 =− 1
180

Now solving for , , and𝑇 = 107 𝐴 = 32 𝑘 = 0. 36
1

32−107 =− 1
180 𝑒0.36𝑡

12
5 = 𝑒0.36𝑡

ln 12
5 = 0. 36𝑡

ln 12
5

0.36 = 𝑡
𝑡 = 2. 43 𝑚𝑖𝑛
𝑡 = 146 𝑠
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7

Integrating factor

Non-autonomous differential equations are such that
and require an integrating factor for solution.𝑑𝑦

𝑑𝑥 = 𝑃(𝑥)𝑦 + 𝑄(𝑥)

If the has coefficient, then divide everything by that coefficient .𝑎 𝑑𝑦
𝑑𝑥 𝑎

PROOF:

Let
𝑑𝑦
𝑑𝑥 = 𝑃(𝑥)𝑦 + 𝑄(𝑥)

Let us denote the integrating factor as Multiplying the equation by to obtain𝐼. 𝐼
𝐼 𝑑𝑦

𝑑𝑥 = 𝐼𝑃(𝑥)𝑦 + 𝐼𝑄(𝑥)

Let us rearrange such that
𝐼 𝑑𝑦

𝑑𝑥 − 𝐼𝑃(𝑥)𝑦 = 𝐼𝑄(𝑥)

Recall the product rule of differentiation
𝑑𝑦
𝑑𝑥 = 𝑢 𝑑𝑣

𝑑𝑥 + 𝑣 𝑑𝑢
𝑑𝑥

Notice that the first part of the differential equation forms the RHS of the product
rule. As a result we then can write that, to obtain a product rule form of the
equation,
− 𝐼 × 𝑃(𝑥) = 𝑑𝐼

𝑑𝑥

(which would as a result give which is equivalent to𝐼 𝑑𝑦
𝑑𝑥 + 𝑑𝐼

𝑑𝑥 𝑦 = 𝐼𝑄(𝑥)
)𝑑

𝑑𝑥 (𝐼𝑦) = 𝐼𝑄(𝑥)

So now, we can solve the obtained differential equation, in which
− 𝑃(𝑥)𝑑𝑥 = 𝑑𝐼

𝐼

− ∫ 𝑃(𝑥)𝑑𝑥 = ∫ 𝑑𝐼
𝐼

− ∫ 𝑃(𝑥)𝑑𝑥 = ln 𝐼
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𝑒
−∫𝑃(𝑥)𝑑𝑥

= 𝐼

Substituting back into or original equation gives us the differential of the product
rule of and𝐼 𝑥

𝑑
𝑑𝑥 (𝐼 × 𝑦) = 𝐼𝑄(𝑥)

Integrating so we can solve for 𝑥

∫ 𝑑
𝑑𝑥 (𝐼 × 𝑦) = ∫ 𝐼𝑄(𝑥)

𝑒
−∫𝑃(𝑥)𝑑𝑥

× 𝑦 + 𝐶 = ∫ 𝑄(𝑥)𝑒
−∫𝑃(𝑥)𝑑𝑥

𝑦 = 𝑒
∫𝑃(𝑥)𝑑𝑥

∫ 𝑄(𝑥)𝑒
−∫𝑃(𝑥)𝑑𝑥

+ 𝐶

Or

𝑦 = 1
𝐼 (∫ 𝑄(𝑥)𝐼 𝑑𝑥)

Integrating factor for 𝑦' + 𝑃(𝑥)𝑦 = 𝑄(𝑥)

(AHL 5.18)𝑒
∫𝑃(𝑥)𝑑𝑥

Example 1 (UPenn Course):

Putting it into standard form, and dividing everything by 𝑡

𝑡 𝑑𝑥
𝑑𝑡 + 𝑡4𝑥 = 4

Putting everything to the integrating factor and factorising t (MAKE SURE TO
ISOLATE DY/DX or DX/DT etc.)
(𝐼 𝑑𝑥

𝑑𝑡 + 𝐼𝑡3𝑥)𝑡 = 4

To obtain the product rule inside the bracket we set
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𝐼𝑡3 = 𝑑𝐼
𝑑𝑡

∫ 𝑡3𝑑𝑡 = ∫ 𝑑𝐼
𝐼

𝑡4

4 + 𝐶 = ln 𝐼

𝐼 = 𝑒
𝑡4

4 +𝐶

Example 2 (UPenn Course):

Multiplying everything by 𝐼
𝐼 𝑑𝑥

𝑑𝑡 − 5𝐼𝑥 = 3

Then we know, in order to obtain the product rule on LHS we must
− 5𝐼 = 𝑑𝐼

𝑑𝑡

∫− 5𝑑𝑡 = ∫ 𝑑𝐼
𝐼

− 5𝑡 + 𝐶 = ln 𝐼
𝐼 = 𝑒−5𝑡+𝐶 = 𝐴

0
𝑒−5𝑡

Since we have obtained the product rule then

∫ 𝑑(𝐼 × 𝑥) = ∫ 3𝐼

𝐼 × 𝑥 = ∫ 3𝐴
0
𝑒−5𝑡𝑑𝑡

𝐼 × 𝑥 =− 3
5 𝐴

𝑜
𝑒−5𝑡 + 𝐶

𝑥 =
− 3

5 𝐴
0
𝑒−5𝑡+𝐶

𝐴
0
𝑒−5𝑡

𝑥 =− 3
5 + 𝐶𝑒5𝑡

Example 3 (UPenn Course):
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Multiplying everything by 𝐼
𝐼 𝑑𝑥

𝑑𝑡 = 𝐼𝑥
1+𝑡 + 2𝐼

𝐼 𝑑𝑥
𝑑𝑡 − 𝐼𝑥

1+𝑡 = 2𝐼

To obtain a product rule we know that
− 𝐼

1+𝑡 = 𝑑𝐼
𝑑𝑡

− ∫ 𝑑𝑡
1+𝑡 = ∫ 𝑑𝐼

𝐼

− ln(1 + 𝑡) + 𝐶 = ln 𝐼
𝐴

0

1+𝑡 = 𝐼

Having obtained the product rule we get that

∫ 𝑑(𝐼 × 𝑥) = ∫ 2𝐼

𝐼 × 𝑥 + 𝐶 = 2𝐴
0

∫ 1
1+𝑡 𝑑𝑡

𝐴
0

1+𝑡 × 𝑥 + 𝐶 = 𝐴
0
(ln 1 + 𝑡) + 𝐶

𝐴
0

1+𝑡 × 𝑥 = 𝐴
0

ln(1 + 𝑡) + 𝐶

the is still a constant𝑥 = ln(1 + 𝑡)(1 + 𝑡) + 𝐶(1 + 𝑡) 𝐶
𝐴

0
𝐶
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8

Homogeneous O.D.E
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9

Euler’s Method

Euler’s method is computing the estimation of an O.D.E in the form
𝑑𝑦
𝑑𝑥 = 𝑓(𝑥, 𝑦)
Because calculus will not help solve such a differential equation. In order for such
thing to be estimated, an initial condition must be given.𝑥(𝑦

0
) = 𝑥

0
Our goal is to approximate
𝑥
◦

= 𝑥(𝑦
◦
)

𝑦 = 𝑦
𝑛

= 𝑦
0
, 𝑦

1
, 𝑦

2
,..., 𝑦

𝑁
𝑥 = 𝑥

𝑛
= 𝑥

0
, 𝑥

1
, 𝑥

2
,..., 𝑥

𝑁
𝑦

𝑁
= 𝑦

◦
𝑥

𝑁
= 𝑥

◦
Step size denotes the amount of steps that one does before calculating the nextℎ
term. The smaller the step size the more accurate the result.

, where is a constant (step length)𝑦
𝑛+1

= 𝑦
𝑛

+ ℎ × 𝑓(𝑥
𝑛
, 𝑦

𝑛
); 𝑥

𝑛+1
= 𝑥

𝑛
+ ℎ ℎ

(AHL 5.18)

Example 1 (Page 549, Exercise 8I, Q3):

Use Euler’s method with a step size of 0.1 to find an approximate value of when𝑦
that satisfies the differential equation with the initial condition𝑥 = 0. 4 𝑦' = 𝑥2 + 𝑦2

. Explain whether your approximate value is greater than or less than the𝑦(0) = 1
actual value.

We must first create a table for this.

𝑛 𝑥
𝑛

𝑦
𝑛 computed at𝑑𝑦

𝑑𝑥 𝑛
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0 0 1 1

1 0. 1 𝑦
1

= 1 + 0. 1 × 1 = 1. 1
We use our formula to compute

1. 12 + 0. 12 = 1. 22
We substitute and to𝑥

1
𝑦

1
obtain this

2 0. 2 𝑦
2

= 1. 1 + 0. 1 × 1. 22 = 1. 222 1. 2222 + 0. 22 = 1. 533284

3 0. 3 𝑦
3

= 1. 222 + 0. 1 × 1. 533284
= 1. 3753284

1. 37352 + 0. 32 = 1. 981528208

4 0. 4 𝑦
4

= 1. 3735 + 0. 1 × 1. 981528208
= 1. 573481221

Final ans, to 3 s.f. is 𝑦 ≈ 1. 57

Approximate is less because our output is increasing each time, getting closer to
the real value.
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10

BONUS

All Taylor series can be expressed as infinity sums

E.g.

𝑘=0

∞

∑ 𝑥𝑘

𝑘! = 𝑒𝑥

𝑘=0

∞

∑ (− 1)𝑘 𝑥2𝑘

(2𝑘)! = cos 𝑥

𝑘=0

∞

∑ (− 1)𝑘 𝑥2𝑘+1

(2𝑘+1)! = sin 𝑥

(sum of a geometric)
𝑘=0

∞

∑ 𝑥𝑘 = 1
1−𝑥  𝑥| | < 1

𝑘=0

∞

∑ 𝑥𝑘+1

𝑘+1 = ln(1 − 𝑥) 𝑥| | < 1

𝑘=0

∞

∑ (− 1)𝑘 𝑥𝑘+1

𝑘+1 = ln(1 + 𝑥) 𝑥| | < 1

𝑘=0

∞

∑ 𝑥2𝑘

(2𝑘)! = cosh 𝑥 = 𝑒𝑥+𝑒−𝑥

2

𝑘=0

∞

∑ 𝑥2𝑘+1

(2𝑘+1)! = sinh 𝑥 = 𝑒𝑥−𝑒−𝑥

2

Proof for geometric series formula

Let 𝑆
𝑛

= 1 + 𝑥 + 𝑥2 + 𝑥3 +...

Multiplying everything by we obtain𝑥
𝑥𝑆

𝑛
= 𝑥 + 𝑥2 + 𝑥3 + 𝑥3 +...

Minusing from 𝑆
𝑛

𝑆
𝑛

− 𝑥𝑆
𝑛

= 1

Factoring
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𝑆
𝑛
(1 − 𝑥) = 1

𝑆
𝑛

= 1
1−𝑥

Hence, notice that the first term always stays, thus .1 = 𝑢
1

Finally, notice that is the ratio, which means . This holds true as long as𝑥 𝑟 = 𝑥
for convergence.𝑥| | < 1

Thus

𝑆
𝑛

=
𝑢

1

1−𝑟 𝑥| | < 1

Given that this is a geometric to infinity, then it can be expressed in infinity sum
form.

𝑘=0

∞

∑ 𝑥𝑘 = 1
1−𝑥  𝑥| | < 1

Proof that
𝑘=0

∞

∑ (− 1)𝑘 𝑥𝑘+1

𝑘+1 = ln(1 + 𝑥) 𝑥| | < 1

First, notice that , hence𝑑
𝑑𝑥 ln(1 + 𝑥) = 1

1+𝑥 ∫ 1
1+𝑥 = ln 1 + 𝑥

Moreover, notice that is the same as a geometric series with .1
1+𝑥 − 𝑥

Hence, it can be expressed as However, remember that we have1
1+𝑥 =

𝑘=0

∞

∑ (− 𝑥)𝑘

to integrate, thus

that is,∫
𝑘=0

∞

∑ (− 𝑥)𝑘

𝑘=0

∞

∑ ∫(− 1)𝑘𝑥 𝑘

=
𝑘=0

∞

∑ (−1)𝑘

𝑘+1 𝑥𝑘+1 + 𝐶

Since when , along when in our sum we have to obtain𝑥 = 0 ln 1 = 0 𝑥 = 0 0
which holds true if .𝐶 = 0

Finally,

=
𝑘=0

∞

∑ (−1)𝑘

𝑘+1 𝑥𝑘+1 = ln(1 + 𝑥) 𝑥| | < 1
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Topic 9 Vectors
1
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5

6
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Topic 10 Advanced Complex
Numbers

1
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3

4

5

6
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Topic 11 Sets & Distributions
1
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5

6
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Revision sources
IB Discord Revision papers made by Andrew:
https://drive.google.com/drive/folders/1QgQwYq72LH5tFrcyUMQ7loE-ZKdVmXGS

Fake mocks by Andrew:
https://drive.google.com/drive/folders/1XqzLyQMSGuJTRqFf06R3ByE4wrZi6UlA

Revision Village question bank & more:
https://www.revisionvillage.com/ib-math-analysis-and-approaches-hl/

IB Math HL videos:
https://www.youtube.com/playlist?list=PLUQ9_xf9jKTc8Tt2ADixwp53rYWA8ZeOT
(covers pretty much every topic)

IB Math HL past papers:
https://freeexampapers.com/exam-papers/IB/Maths/Higher/

https://drive.google.com/drive/folders/1QgQwYq72LH5tFrcyUMQ7loE-ZKdVmXGS
https://drive.google.com/drive/folders/1XqzLyQMSGuJTRqFf06R3ByE4wrZi6UlA
https://www.revisionvillage.com/ib-math-analysis-and-approaches-hl/
https://www.youtube.com/playlist?list=PLUQ9_xf9jKTc8Tt2ADixwp53rYWA8ZeOT
https://freeexampapers.com/exam-papers/IB/Maths/Higher/
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EXTRA
Source: Part 1 course, Week 3, Challenge Question 2.

The Power Tower

Find 𝑑
𝑑𝑥 𝑥

𝑥𝑥𝑥𝑥𝑥𝑥𝑥

Let , then notice we rewrite as𝑦 = 𝑥𝑥𝑥𝑥𝑥𝑥

𝑦 = 𝑥𝑦

Taking ln to remove the exponential
ln 𝑦 = 𝑦 ln 𝑥
Implicitly differentiating 𝑑(ln 𝑦 = 𝑦 ln 𝑥)
𝑢 = 𝑦,  𝑣 = ln 𝑥
𝑢 = 𝑑𝑦,  𝑣 = 𝑑𝑥

𝑥
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𝑑𝑦
𝑦 = 𝑦

𝑥 𝑑𝑥 + 𝑑𝑦 ln 𝑥

𝑑𝑦( 1
𝑦 − ln 𝑥) = 𝑦

𝑥 𝑑𝑥

𝑑𝑦
𝑑𝑥 =

𝑦
𝑥

1
𝑦 −ln𝑥

𝑑𝑦
𝑑𝑥 = 𝑦2

𝑥−𝑦𝑥ln𝑥

𝑑𝑦
𝑑𝑥 = 𝑦2

𝑥(1−𝑦ln𝑥)

Newton Raphson’s Linearisation Method

𝑥
𝑛+1

= 𝑥
𝑛

−
𝑓(𝑥

𝑛
)

𝑓'(𝑥
𝑛
)

OR
𝑓(𝑥

𝑛
) + 𝑓'(𝑥

𝑛
)(𝑎 − 𝑥)

Where is the guessing number and is the original number𝑥
𝑛

𝑎

For example,
Estimate 15

We estimate that the answer is 4. Hence, 𝑥
𝑛

= 4

𝑓(𝑥) = 𝑥2 − 𝑎
𝑓'(𝑥) = 2𝑥
𝑥

𝑛+1
= 4 − 16−15

8

𝑥
𝑛+1

= 4 − 1
8 ≃ 3. 875

In calculator, we obtain that , which is correct to 3 decimal points.15 = 3. 8729

Hence, or,3 500 3 𝑎
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𝑓(𝑥) = 𝑥3 + 𝑎

𝑓'(𝑥) = 3𝑥2

𝑥
𝑛+1

= 8 − 83−500

3×82

𝑥
𝑛+1

= 8 − 1
16

≃ 7. 9375
Whilst in calculator we obtain that 3 500 = 7. 9370

Prove that 𝑑
𝑑𝑥 𝑎𝑥 = 𝑎𝑥 ln 𝑥

First, 𝑑
𝑑𝑥 (𝑎𝑥)

Let 𝑦 = 𝑎𝑥

Putting everything to ln operator
ln 𝑦 = 𝑥 ln 𝑎
Implicitly differentiating
𝑑(ln 𝑦 = 𝑥 ln 𝑎)
𝑑𝑦
𝑦 = 𝑑𝑥 ln 𝑎

Rearranging to get
𝑑𝑦
𝑑𝑥 = 𝑦 ln 𝑎

Substituting y back in
𝑑𝑦
𝑑𝑥 = 𝑎𝑥 ln 𝑎

OR

𝑑
𝑑𝑥 𝑒𝑥ln𝑎

= ln 𝑎 × 𝑒𝑥ln𝑎

ln 𝑎 × 𝑎𝑥

Find
𝑥→∞
lim (1 + 𝑎

𝑥 )𝑥
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Let 𝑦 = (1 + 𝑎
𝑥 )𝑥

Putting everything to ln operator
ln 𝑦 = 𝑥 ln(1 + 𝑎

𝑥 )

Taylor expanding ln(1 + 𝑎
𝑥 )

We know that the first term would be 𝑎
𝑥 + 𝑂( 1

𝑥2 )

Substituting back in
𝑥( 𝑎

𝑥 + 𝑂( 1

𝑥2 )

= 𝑎 + 𝑂( 1
𝑥 )

We ignore the O because as it approaches 0.𝑥 → ∞

𝑥→∞
lim ln 𝑦 =

𝑥→∞
lim 𝑎

𝑥→∞
lim (𝑦 = 𝑒𝑎)

= 𝑒𝑎
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Source: Part 3, Week 1, Simple O.D.E challenge homework
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Equilibria points and estimation of differential equations

To find equilibria of a differential equation

Let be denoted as𝑑
𝑑𝑡 𝑥

Let

or rather𝑥 = 𝑓(𝑥) 𝑑
𝑑𝑡 = 𝑓(𝑥)

Plotting vs reveals the stability type.𝑥 𝑓(𝑥)
At there are equilibrium points.𝑓(𝑥) = 0

An equilibrium is stable if (decreasing)𝑓'(𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚) < 0
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An equilibrium is unstable if (increasing)𝑓'(𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚) > 0
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Using formulas from above

(∆𝑥)
𝑖

= 3−0
𝑛

𝑥
𝑖

= 0 + 3𝑖
𝑛

𝑓(𝑥
𝑖
) = 𝑥2

Substituting
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𝑖=1

𝑛

∑ ( 3𝑖
𝑛 )2 × 3

𝑛

=
𝑖=1

𝑛

∑ 27𝑖2

𝑛3

Seperating

27

𝑛3
𝑖=1

𝑛

∑ 𝑖2

And now substituting what is given
27

𝑛3 × 𝑛(𝑛+1)(2𝑛+1)
6

= 27(2𝑛3+3𝑛2+𝑛)

6𝑛3

= 9 + 27
2𝑛 + 9

2𝑛2

Improper integrals

Improper integrals come in 2 forms

Blow-up and Tail

First it is important to clarify the powers of functions that they converge and diverge
to.

If it is given in the form

𝑎

∞

∫ 𝑥−𝑝

Then for convergence must be𝑝 𝑝 > 1
For divergence must be𝑝 𝑝 ≤ 1

If given in the form

(0 because it is an asymptote)
𝑎

0

∫ 𝑥−𝑝

Then for convergence must be𝑝 𝑝 < 1
For divergence must be𝑝 𝑝 ≥ 1

It is possible to test whether an integral converges or diverges by looking at the
leading order term in the MacLaurin series.
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Afterwards, replace the limit with any variable and create a limit that approaches the
new variable.

Maclaurin of is𝑒−𝑥 1 + 𝑂(𝑥)

Hence we obtain 1
𝑥

Recalling that at it is divergent.𝑝 = 1

http://www.uop.edu.pk/ocontents/Section4.pdf

Trigonometric integrals

http://www.uop.edu.pk/ocontents/Section4.pdf
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Trigonometric integrals use the means of trigonometric identities in order to work
around the integral.

A generalisation is as shown, although it is quite intuitive anyway:

The reduction formula is the following:
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Euler’s Formula

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

Recall that, through Taylor expansions of and , they can be written as thesin 𝑥 cos 𝑥
following infinite polynomials:

sin 𝑥 = 𝑥 − 𝑥3

3! + 𝑥5

5! − 𝑥7

7! ...

cos 𝑥 = 1 − 𝑥2

2! + 𝑥4

4! − 𝑥6

6! ...

Also, recall the expansion of 𝑒𝑥

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + 𝑥4

4! +...
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Now, substituting to𝑖𝑥 𝑥

𝑒𝑖𝑥 = 1 + 𝑖𝑥 + (𝑖𝑥)2

2! + (𝑖𝑥)3

3! + (𝑖𝑥)4

4! +...

Expanding and splitting imaginary with real parts

𝑒𝑖𝑥 = 1 + 𝑖𝑥 − 𝑥2

2! − 𝑖𝑥3

3! + 𝑥4

4! ...

𝑒𝑖𝑥 = (1 − 𝑥2

2! + 𝑥4

4! − 𝑥6

6! +...) + 𝑖(𝑥 − 𝑥3

3! + 𝑥5

5! − 𝑥7

7! +...)

And hence, after substitution, we obtain:

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

Substituting toπ 𝑥

𝑒𝑖π = cos π + 𝑖 sin π
𝑒𝑖π =− 1 + 0
𝑒𝑖π + 1 = 0

https://www.youtube.com/watch?v=uX0NGCDVfWA

Volumes

Let us calculate the area of a bead.

https://www.youtube.com/watch?v=uX0NGCDVfWA
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Consider taking an infinitesimal strip inside with width and height𝑥 𝑑𝑥 ℎ
The height depends on radius. Then writing the height using pythagoras whereℎ

, henceℎ
2 = 𝑅2 − 𝑥2 ℎ = 2 𝑅2 − 𝑥2

However now consider expanding the infinitesimal strip height width to𝑥 ℎ 𝑑𝑥
become a circumference. So, . Giving us a new form:2π𝑥
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So, we have obtained such that is one of the elements. However, now considerπ𝑥
defining the height. So we get we got that height as

, henceℎ
2 = 𝑅2 − 𝑥2 ℎ = 2 𝑅2 − 𝑥2

Now consider applying circumference the height to its circumference to obtain

2π𝑥 × 2 𝑅2 − 𝑥2

𝑉 = ∫ 𝑑𝑉 =
𝑎

𝑅

∫ 2π𝑥 × 2 𝑅2 − 𝑥2

Which gives
4
3 πℎ3
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Now consider solving orthogonally

Now consider creating a disk out of it

So it is obtained that, through the formula of area of a circle
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, which becomesπ𝑟2 π( 𝑅2 − 𝑦2)
2

However, this considers the whole shape, so we must subtract the inside of radius 𝑎

π( 𝑅2 − 𝑦2)
2

− π𝑎2 = 𝑑𝑉

So 𝑉 = ∫ 𝑑𝑉 =
−ℎ

ℎ

∫ π( 𝑅2 − 𝑦2)
2

− π𝑎2

Arc Length

Consider curve which

Through pythagoras we obtain that

We can manipulate it using the chain rule such that𝑑𝐿 = 𝑑𝑥2 + 𝑑𝑦2

𝑑𝐿 = 𝑑𝑥2 + ( 𝑑𝑦
𝑑𝑥 𝑑𝑥)2

𝑑𝐿 = 1 + ( 𝑑𝑦
𝑑𝑥 )2𝑑𝑥

Moreover consider a parametric curve which is implicit in nature;

Then knowing that

𝑑𝐿 = 𝑑𝑥2 + 𝑑𝑦2

Using the chain rule to obtain

𝑑𝐿 = ( 𝑑𝑥
𝑑𝑡 𝑑𝑡)2 + ( 𝑑𝑦

𝑑𝑡 𝑑𝑡)2

𝑑𝐿 = ( 𝑑𝑥
𝑑𝑡 )2 + ( 𝑑𝑦

𝑑𝑡 )2𝑑𝑡

Average

The average considered to be such that the above area in the interval is the𝑎, 𝑏[ ]
same as the below area after crossing a line.
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𝑓 = 𝑎

𝑏

∫𝑓(𝑥)𝑑𝑥

𝑎

𝑏

∫𝑑𝑥

If the function is circular, such as then apply the followingsin

Centroids and infinitesimal square area computation

A centroid is the center of a function in domain . e.g. triangles It is given by the𝐷
coordinates (𝑥, 𝑦)

Recall that average is given by

𝑥 = 𝐷
∫𝑥

𝐷
∫1

Consider computing squares with infinitesimal lengths, of and . Hence the area𝑑𝑦 𝑑𝑥
of such a square is . I.e.𝑑𝑦 𝑑𝑥 𝑑𝐴 = 𝑑𝑦 𝑑𝑥

Recall that, in order to find the area between two graphs that
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Recall that, to find the area in between one could compute it as

𝑎

𝑏

∫ 𝑓(𝑥) − 𝑔(𝑥)𝑑𝑥

However, consider finding the area using squares of 𝑑𝑦 𝑑𝑥

∫
𝐷
∫ 𝑑𝐴

Given that our infinitesimal area is given by 𝑑𝑦 𝑑𝑥 =  𝑑𝐴

∫∫ 𝑑𝑦 𝑑𝑥

The upper limit of such is given by the upper function , whilst the lower is𝑓(𝑥) 𝑔(𝑥)

So, ∫
𝑔(𝑥)

𝑓(𝑥)

∫ 𝑑𝑦 𝑑𝑥

Gives

, which is the same as above.∫ 𝑓(𝑥) − 𝑔(𝑥) 𝑑𝑥

Going back to the original question of centroids, of which

𝑥 = 𝐷
∫𝑥

𝐷
∫1

Otherwise

𝑥 =
∫

𝐷
∫𝑥 𝑑𝐴

∫
𝐷
∫𝑑𝐴

Recalling that 𝑑𝐴 = 𝑑𝑦 𝑑𝑥

𝑥 =
∫

𝐷
∫𝑥 𝑑𝑦 𝑑𝑥

∫
𝐷
∫𝑑𝑦 𝑑𝑥

One should notice that the integral on the denominator is the same as one that we
have just computed in order to gain an understanding. Hence, it can be generalised
as area .𝐴
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𝑥 = 1
𝐴 ∫∫ 𝑥 𝑑𝑦 𝑑𝑥

Solving for the first integral, has nothing to do with , hence it can be treated like a𝑥 𝑦
constant. The boundaries are the same, of which the higher function minus the
lower.

𝑥 = 1
𝐴 ∫ 𝑥

𝑔(𝑥)

𝑓(𝑥)

∫ 𝑑𝑦( ) 𝑑𝑥

(These are just your regular brackets, by the way, not some weird function notation)
At the same time, let us substitute the limits for the integral𝑑𝑥

𝑥 = 1
𝐴

𝑎

𝑏

∫ 𝑥(𝑓(𝑥) − 𝑔(𝑥)) 𝑑𝑥

Now let us compute for . It is important to note that as we are integrating for first,𝑦 𝑑𝑦
we may not treat as a constant anymore like we did for , thus the computation will𝑦 𝑥
be different.

𝑦 = 𝐷
∫𝑦 

𝐷
∫1

𝑦 =
∫

𝐷
∫𝑦 𝑑𝐴

∫
𝐷
∫𝑑𝐴

𝑦 =
∫

𝐷
∫𝑦 𝑑𝑦 𝑑𝑥

∫
𝐷
∫𝑑𝑦 𝑑𝑥

𝑦 = 1
𝐴 ∫

𝑔(𝑥)

𝑓(𝑥)

∫ 𝑦 𝑑𝑦 𝑑𝑥

𝑦 = 1
𝐴

𝑎

𝑏

∫ 1
2 ((𝑓(𝑥))2 − (𝑔(𝑥))2) 𝑑𝑥

Center of mass

𝑥 = 𝐷
∫𝑥 𝑑𝑀

𝐷
∫𝑑𝑀
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𝑥 = 1
𝑀

𝐷
∫ 𝑥 𝑑𝑀

Where is an equation of mass, typical given by rho for a one dimensional𝑑𝑀 ρ
density of an object

Moments and Gyrations

Moments and gyrations are calculated using the formula

𝐼 = 𝑟2𝑀
Or otherwise

𝑑𝐼 = 𝑟2𝑑𝑀
Where
is the distance from the center of mass𝑟
is the mass element, which can be denoted as where rho is the density.𝑑𝑀 ρ 𝑑𝐴 𝑑𝐴

varies with the shape respectively.

Consider a disc as an example

Hence the infinitesimal strip height can be calculated using pythagoras which𝑑𝑥
yields

𝑅2 − 𝑥2 = ℎ
However consider symmetry so

2 𝑅2 − 𝑥2

Now consider

𝑑𝐼 = 𝑟2𝑑𝑀
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Decomposing into the following

𝑑𝐼 = 𝑟2ρ 𝑑𝐴

We know 𝑑𝐴 = 2 𝑅2 − 𝑥2 𝑑𝑥
And we know is so we obtain𝑟 𝑥

2 × 2 × ρ
0

𝑅

∫ 𝑥2 𝑅2 − 𝑥2𝑑𝑥

The 2 comes from symmetry. Notice that for limits we begin with 0, and never touch
the negative numbers. As a result, we must consider it.

This evaluates into 1
2 𝑀𝑅2

Another perspective to the problem, considering an infinitesimal circle

𝑑𝐼 = 𝑟2𝑑𝑀
Decomposing into

𝑑𝐼 = 𝑟2ρ 𝑑𝐴
Considering 𝑑𝐴

Given that , then𝐴 = π𝑟2 𝑑𝐴 = 2π𝑟
𝑑𝐴 = 2π𝑟 𝑑𝑟
Hence we obtain

𝑑𝐼 = 𝑟2 × 2 × π × 𝑟 × ρ 𝑑𝑟

𝐼 = 2πρ
0

𝑅

∫ 𝑟3

knowing that= 1
2 𝑀𝑅2 π𝑟2ρ = 𝑀
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Discrete Differences

For discrete calculus. We can differentiate but in a different way. Consider the two
following definitions

𝑓'(𝑥) =
ℎ→0
lim ( 𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ ) & ∆𝑎
𝑛

=
𝑎

𝑛+1
−𝑎

𝑛

1

One can observe that the difference is small, and that they are very similar. But we
have h defined strictly as 1 for the discrete case.

Now consider the backward difference.

(The symbol is called a ‘Nabla’ respectively)∇𝑎
𝑛

=
𝑎

𝑛
−𝑎

𝑛−1

1

If one was to plot the discrete values, then you would realise you find the difference
between 2 points, similar to finding the gradient.

For example, consider 4𝑛
4𝑛 = 0, 4, 8, 12, 16, 20, 24,...
∆4𝑛 = 4, 4, 4, 4, 4, 4,...
It is a linear, constant.

Consider Fibonacci.
𝐹 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...
∆𝐹 = 1, 0, 1, 1, 2, 3, 5, 8, 13, 21,...
One obtains a Fibonacci but with a shift.

Consider the sequence 2𝑛

2𝑛 = 1, 2, 4, 8, 16, 32, 64, 128, 256,...

∆2𝑛 = 1, 2, 4, 8, 16, 32, 64, 128, 256,...
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It’s the same! Why?

Consider the sequence 𝑛2

𝑛2 = 1, 4, 9, 16, 25, 36, 49, 64, 81,...

one can see that this is∆𝑛2 = 3, 5, 7, 9, 11, 13, 15, 17,... 2𝑛 + 1

∆(2𝑛 + 1),  ∆2𝑛2 = 2, 2, 2, 2, 2, 2, 2, 2, 2,...

AS we can see this is very similar to differentiating∆3𝑛2 = 0, 0, 0, 0, 0, 0, 0, 0,...
This sequence has a degree of 2. One can obtain the degree of the polynomial
sequence as the following

, so hence the above is a degree of 2∆𝑝+1𝑎 = 0
One should observe, why do we get in the second difference?2𝑛 + 1
Falling powers obtain us a factorial.

𝑛𝑘 = 𝑛(𝑛 − 1)(𝑛 − 2)... (𝑛 − 𝑘 + 1),  𝑛0 = 1
Holds true for 𝑘 > 0
Generalisation:

𝑛!
(𝑛−𝑘)!

Fact: like the power rule∆𝑛𝑘 = 𝑘𝑛𝑘−1

Applying the generalisation to 𝑛2

From the generalisation

So

The powers fell, kind of like differentiating

Let us talk about the definition of .𝑒
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We know that 𝑒𝑥 =
𝑘=0

∞

∑ 𝑥𝑘

𝑘!

So 𝑒 = 1 + 1 + 1
2 + 1

6 + 1
24 +...

But this is the continuous definition. What would the discrete definition be?

So is like the euler’s number of discrete calculus.2𝑛

Symbol Name Function Examples

𝐼 Identity (𝐼𝑎)
𝑛

= 𝑎
𝑛 𝐼2 = 𝐼

𝐸 Forward shift (𝐸𝑎)
𝑛

= 𝑎
𝑛+1 𝐸2, 𝐸3, 𝐸4... 𝑒𝑡𝑐

𝐸−1 Backward shift (𝐸−1𝑎)
𝑛

= 𝑎
𝑛−1

𝐸−2, 𝐸−3, 𝐸−4... 𝑒𝑡𝑐

∆ Forward difference ∆𝑎
𝑛

= 𝑎
𝑛+1

− 𝑎
𝑛

∆ = 𝐸 − 𝐼

∇ Backward difference ∇𝑎
𝑛

= 𝑎
𝑛

− 𝑎
𝑛−1 ∇ = 𝐼 − 𝐸−1

For higher derivatives, in which for example

(∆2𝑎)
𝑛

= ∆(∆𝑎)
𝑛

= ∆(𝑎
𝑛+1

− 𝑎
𝑛
) = ∆𝑎

𝑛+1
− ∆𝑎

𝑛

= 𝑎
𝑛+2

− 𝑎
𝑛+1

− (𝑎
𝑛+1

− 𝑎
𝑛
)
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= 𝑎
𝑛+1

− 2𝑎
𝑛+1

+ 𝑎
𝑛

OR, for example,

∆2 = (𝐸 − 𝐼)2

= 𝐸2 − 2𝐸𝐼 + 𝐼2

Recall that the identity function does nothing when applied

= 𝐸2 − 2𝐸 + 𝐼
= 𝑎

𝑛+2
− 2𝑎

𝑛+1
+ 𝑎

𝑛

So one could come with a generalisation of

∆𝑘 = (𝐸 − 𝐼)𝑘

Which would give a binomial relation of

𝑖=0

𝑘

∑ (− 1)𝑘−𝑖 𝑘
𝑖( ) 𝐸𝑖

Suppose a question asks to find the coefficient of the 6th term in the expansion of 8.
Given that , that means the 6th will be𝑖 = 0 𝑖 = 5.
So

(− 1)8−5 8
5( ) 𝐸5 =− 56

Lastly, consider the following
∆ = 𝐸 − 𝐼

∆−1 = (𝐸 − 𝐼)−1

One would make it convenient to write it in the following form

∆−1 =− (𝐼 − 𝐸)−1

Which is

. Reminding of the infinite geometric series formula. The expansion of∆−1 =− 1
𝐼−𝐸

such would be

=− (𝐼 + 𝐸 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 +....)
Let us consider an example
𝑎 = 3, − 1, 4, − 1, 5, − 9, 2, − 6, 5, 0, 0, 0, 0,...

∆−1𝑎 =− 2, 1, 0, 4, 3, 8, − 1, 1, − 5, 0, 0, 0, 0,...

Otherwise:
0 + 5 = 5 →  5 ×− 1 =− 5.
0 + 5 − 6 =− 1 →  − 1 ×− 1 = 1

from the right side and so on.0 + 5 − 6 + 2 = 1 →  1 ×− 1 =− 1
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Otherwise, we can define in terms of ∆
∆ = 𝑎

𝑛+1
− 𝑎

𝑛

− (𝑎
𝑛

+ 𝑎
𝑛+1

+ 𝑎
𝑛+2

+...)

However, notice that this only works for terms with discontinuity i.e. the ones that
follow with 0s after.

Let us consider ∆(∆−1𝑎)
You will notice that you will obtain

∆(∆−1𝑎) = 3, − 1, 4, − 1, 5, − 9, 2, − 6, 5, 0, 0, 0, 0,...

Discrete calculus

Discrete function Sequence⇒
Discrete derivative Difference⇒
Discrete Integral Series⇒
Discrete differential equation Recursion relation⇒

The fundamental theorem of integral calculus

𝑛=𝑎

𝑏

∑ ∆𝑢
𝑛

= 𝑢
𝑛[ ]𝑏+1

𝑎

Why?

Let us compute the ∆𝑢
𝑛

𝑛=𝑎

𝑏

∑ ∆𝑢
𝑛

= (𝑢
𝑛+1

− 𝑢
𝑛
) + (𝑢

𝑛+2
− 𝑢

𝑛+1
) +.... + (𝑢

𝑏
− 𝑢

𝑏−1
) + (𝑢

𝑏+1
− 𝑢

𝑏
)

Notice that everything cancels out except and .− 𝑢
𝑛

𝑢
𝑏+1

For example, consider

, true
𝑛=1

2

∑ ∆𝑢
𝑛

= ∆𝑢
1

+ ∆𝑢
2

= (𝑢
2

− 𝑢
1
) + (𝑢

3
− 𝑢

2
) = 𝑢

3
− 𝑢

1

Example, consider 𝑛!
∆𝑛! = (𝑛 + 1)! − 𝑛! = 𝑛! (𝑛 + 1 − 1) = 𝑛! 𝑛

𝑛=𝑎

𝑏

∑ 𝑛! 𝑛 = 𝑛![ ]𝑏+1
𝑎
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Integration by parts

𝑛=𝑎

𝑏

∑ 𝑢𝑣 = 𝑢𝑣[ ]𝑏+1
𝑎

−
𝑛=𝑎

𝑏

∑ 𝐸𝑣∆𝑢

Example

𝑛=0

𝑘

∑ 𝑛2𝑛

Let , then𝑢 = 𝑛  & 𝑣 = 2𝑛

= 𝑛2𝑛[ ]
𝑏+1

𝑛
−

𝑛=𝑎

𝑘

∑ 2𝑛+1∆𝑛

and so∆𝑛 = 1 𝐸2𝑛 = 2𝑛+1

= 𝑛2𝑛[ ]
𝑘+1

𝑛
− 2𝑛+1[ ]

𝑘+1

𝑎

= (𝑘 − 1)2𝑘+1 + 2

Differential equations

Consider
𝑢

𝑛+1
= λ𝑢

𝑛

Let us rewrite
𝑢

𝑛+1
= 𝐸𝑢

𝑛

𝐸𝑢
𝑛

= λ𝑢
𝑛

(𝐸 − λ𝐼)𝑢
𝑛

= 0

So, where is the initial condition.𝑢 = 𝐶λ𝑛 𝐶
Which makes sense. The higher term is defined as lambda times the lower

sequence, making a difference of . and this can be generalised as . One shouldλ λ𝑛

not forget the initial constant, though.

Consider
∆𝑢 = λ𝑢

Let us rewrite
(𝐸 − 𝐼)𝑢 = λ𝑢
(𝐸 − (λ + 1)𝐼)𝑢 = 0
Hence one obtains the solution as
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as that’s the difference between as one would obtain a zero.𝑢 = 𝐶(λ + 1)𝑛 𝐸 & 𝐼

Infinite series

Let an infinite series take the form

𝑛=1

∞

∑ 𝑎
𝑛

Then one, using the same methodology of improper integrals, could rewrite

𝑇 →∞
lim

𝑛=1

𝑇

∑ 𝑎
𝑛

However, one needs to determine convergence or divergence of an infinite series.
Consider

𝑛=0

∞

∑ 𝑒−𝑛 = 1 + 1
𝑒 + 1

𝑒2 + 1

𝑒3 +···= 1

1−𝑒−1

One can notice that this is a geometric series. However,
Consider the function

𝑛=1

∞

∑ 1
𝑛 = 1 + 1

2 + 1
3 + 1

4 +···

One would ask, does it diverge or converge?
Consider the following

𝑛=1

∞

∑ 1
𝑛 ∼

1

∞

∫ 1
𝑛

Recall that (from the improper integral section)

for divergence
1

∞

∫ 𝑥−𝑝 𝑝 ≤ 1 ⇒

Given that , then divergence occurs.𝑛−𝑝 & 𝑝 = 1
One could think of the infinite series as a ‘discretisation’ of such an integral.
For a more clear image, consider the graph of 1

𝑥
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What the sum inherently does is that it creates a Riemann sum with step size 1 (i.e.
width 1) with height determined by the intersection of the left side. By this
interpretation, then one can effectively conclude that

𝑛=1

∞

∑ 1
𝑛 >

1

∞

∫ 1
𝑛

There are also tests to determine whether something convergences or diverges.
Consider the following diagram

The first test to learn is called the th term test𝑛

If then diverges
𝑛→∞
lim 𝑎

𝑛
≠ 0

𝑛

∞

∑ 𝑎
𝑛

E.g.

then , hence it converges
𝑛=0

∞

∑ (−1)𝑛

𝑛! 𝑛→∞
lim (−1)𝑛

𝑛! = 0

Of course, we know this is true because the sum equals from definition of taylor𝑒−1

and sums
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However, consider the harmonic series

, then . Does this mean it converges? No.
𝑛=0

∞

∑ 1
𝑛 𝑛→∞

lim 1
𝑛 = 0

One needs to consider the logical statement
If then𝑋 𝑌
I.e.

If then diverges
𝑛→∞
lim 𝑎

𝑛
≠ 0

𝑛

∞

∑ 𝑎
𝑛

One CANNOT do
If then𝑌 𝑋
I.e.

If diverges then
𝑛

∞

∑ 𝑎
𝑛 𝑛→∞

lim 𝑎
𝑛

≠ 0

I.e. one cannot conclude that if the sequence diverges that the limit will be always be
not . However, one can conclude that if the limit is not then it is divergent.0 0
This is called the converse, and this will not always be true.

What holds, however , is the contrapositive of the statement.
If NOT then NOT𝑌 𝑋
I.e.

If converges then
𝑛

∞

∑ 𝑎
𝑛 𝑛→∞

lim 𝑎
𝑛

= 0

Convergence Tests I

Integral test

One could consider expressing an infinite arithmetic series as an integral. I.e. one
could think of an infinite arithmetic series as a discretized form of an improper
integral.

A prerequisite for this test to hold true is that
0 ≤ 𝑎

𝑛+1
≤ 𝑎

𝑛

𝑎'(𝑥) ≤ 0 ≤ 𝑎(𝑥)
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𝑎(𝑛) = 𝑎
𝑛

I.e. that the arithmetic sequence always decreases in higher terms. The derivative of
the higher function is always decreasing, and such that all points of the continuous
function touch the arithmetic series’ individual values.

As such, the definition is as follows:

If 0 ≤ 𝑎
𝑛+1

≤ 𝑎
𝑛

𝑎'(𝑥) ≤ 0 ≤ 𝑎(𝑥)
𝑎(𝑛) = 𝑎

𝑛

Then
𝑛

∞

∑ 𝑎
𝑛

∼
𝑛

∞

∫ 𝑎(𝑥)𝑑𝑥

With convergence and divergence following an IFF statement (if and only if ). This⇔
means the following:
If then𝐴 𝐵
And If then A𝐵
Moreover, the contrapositive would be
If NOT then NOT𝐴 𝐵
If NOT then NOT𝐵 𝐴
Otherwise 𝐴 ⇔ 𝐵
For example:

Consider

2

∞

∑ 1

𝑛ln𝑝𝑛

Writing it as an integral

, evaluating at and gives
2

∞

∫ 1

𝑛ln𝑝𝑛
= ln1−𝑝𝑛

1−𝑝 ∞ 2

< ∞,  𝑝 > 1
∞,  𝑝 ≤ 1
Recall this from improper integral definition for convergence.

Comparison test

Two sequences and can be compared𝑎
𝑛

𝑏
𝑛
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If then0 ≤ 𝑎
𝑛

≤ 𝑏
𝑛

𝑛

∞

∑ 𝑎
𝑛

≤
𝑛

∞

∑ 𝑏
𝑛

Convergence convergence⇐
Divergence divergence⇒

One could think of scaling to a higher or a lower state. Since, for example, you are𝑎
𝑛

scaling it to a higher sequence, and that sequence converges, that means that the
smaller must as well. However, if the bigger sequence diverges, it is possible that it
has been upscaled so much that only the bigger sequence diverges hence it may not
hold true for the smaller.

Example

𝑛=0

∞

∑ cos2𝑛

1+ 𝑛3

Let . Let .𝑎
𝑛

= cos2𝑛

1+ 𝑛3
𝑏

𝑛
> 𝑎

𝑛

This means the following
cos2𝑛

1+ 𝑛3

≤
>

1

𝑛3

So consider

, hence it converges. Thus the smaller must converge.
𝑛=0

∞

∑ 1

𝑛3
= 1

𝑛
3
2

3
2 > 1

Limit test

If , and then0 < 𝑎
𝑛

0 < 𝑏
𝑛

0 <
𝑛→∞
lim < ∞

𝑛

∞

∑ 𝑎
𝑛

𝑛

∞

∑ 𝑏
𝑛

Convergence convergence⇔
Divergence divergence⇔

Basically, the leading order term must be equivalent.

Example

𝑛

∞

∑ ln2(1 + 1

𝑛2 ) ∼
𝑛

∞

∑( 1

𝑛2 )2 ∼
𝑛

∞

∑ 1

𝑛4

, so it converges.1 < 4
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Convergence Tests II

Root test

We will not consider convergence tests which effectively compare the series to a
geometric series.
Consider the following geometric series

𝑛=0

∞

∑ 𝑥𝑘 = 1 + 𝑥 + 𝑥2 + 𝑥3 +···

Rewriting as a limit

𝑇→∞
lim

𝑛=0

𝑇

∑ = 1 + 𝑥 + 𝑥2 + 𝑥3 +···+ 𝑥𝑇

This is the basis of the test.

𝑛→∞
lim 𝑛 𝑎

𝑛

If , then , converges for , diverges for and is0 < 𝑎
𝑛

ρ =
𝑛→∞
lim 𝑛 𝑎

𝑛
𝑛

∞

∑ 𝑎
𝑛

𝑝 < 1 𝑝 > 1

failing for 𝑝 = 1

Consider

𝑛=1

∞

∑ (ln(1 + cos 1
𝑛 ))

1
2 𝑛

ρ = ((ln(1 + cos 1
𝑛 ))

1
2 𝑛

)
1
𝑛

ρ = ln(1 + cos 1
𝑛 )

ρ =
𝑛→∞
lim ( ln(1 + cos 1

𝑛 ))

, hence convergent.ρ = ln 2 < 1
It is also important to remember that

𝑛→∞
lim 𝑛 𝑛 = 1

Ratio test

Ratio tests check the difference between the original and leading term in a manner of
ratios.
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If , otherwise then , converges for0 < 𝑎
𝑛

ρ =
𝑛→∞
lim

𝑎
𝑛+1

𝑎
𝑛

ρ =
𝑛→∞
lim (𝑎

𝑛+1
× 1

𝑎
𝑛

)
𝑛

∞

∑ 𝑎
𝑛

, diverges for , and fails for𝑝 < 1 𝑝 > 1 𝑝 = 1

Consider

𝑛=0

∞

∑ 𝑛𝑛

𝑛!

Let , then𝑎
𝑛

= 𝑛𝑛

𝑛! 𝑎
𝑛+1

= (𝑛+1)𝑛+1

(𝑛+1)!

𝑛→∞
lim (𝑛+1)𝑛+1

(𝑛+1)! × 𝑛!

𝑛𝑛

Consider cancelling the factorials to obtain
(𝑛+1)𝑛+1

(𝑛+1) × 1

𝑛𝑛

More cancellation can occur;

𝑛→∞
lim (𝑛+1)𝑛

𝑛𝑛

Notice the following

𝑛→∞
lim ( 𝑛+1

𝑛 )𝑛

𝑛→∞
lim (1 + 1

𝑛 )𝑛 = 𝑒

, hence divergent𝑒 > 1

First question
Applying root test to obtain

𝑛→∞
lim ( 3𝑛

3𝑛−1 )𝑛

Attempting to obtain form𝑒
3𝑛−1+1

3𝑛−1 = 1 + 1
3𝑛−1
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𝑛→∞
lim (1 + 1

3𝑛−1 )𝑛

Recall from definition of 𝑒

𝑛→∞
lim (1 + 𝑥

𝑛 )𝑛 = 𝑒𝑥

So one could say that , whilst the is a part of𝑥 = 1
3 − 1 𝑂(𝑛)

Hence, , so divergent= 𝑒
1
3

Question 2

𝑛→∞
lim (1 − 1

3𝑛 )𝑛

So 𝑥 =− 1
3

Hence = 𝑒
− 1

3

Thus convergent

Absolute and Conditional convergence

The following only applies for for alternating series, generally of the form

𝑛

∞

∑(− 1)𝑛𝑎
𝑛

If then convergence0 ≤ 𝑎
𝑛

≤ 𝑎
𝑛+1 𝑛→∞

lim 𝑎
𝑛

= 0 ⇔

divergence
𝑛→∞
lim 𝑎

𝑛
≠ 0 ⇔

There are 2 important definitions to follow

Absolute convergence implies that both AND converge
𝑛

∞

∑ 𝑎
𝑛

𝑛

∞

∑ 𝑎
𝑛| |

Conditional convergence implies that converges BUT diverges
𝑛

∞

∑ 𝑎
𝑛

𝑛

∞

∑ 𝑎
𝑛| |

Recall

for . However, is that REALLY true?ln(1 + 𝑥) =
𝑘=0

∞

∑ (− 1)𝑘 𝑥𝑘

𝑘 𝑥| | < 1

Consider 𝑥 = 1
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is the harmonic alternating series, and evaluating limits from our
𝑘=0

∞

∑ (− 1)𝑘 1
𝑘

definition gives 0. Hence this is convergent. However, the absolute value of this
would give the regular harmonic series, and that is divergent.

Power series

Power series is a function expressed in the form

𝑛=0

∞

∑ 𝑎
𝑛
𝑥𝑛

So is now the coefficient.𝑎
𝑛

Consider the fibonacci sequence

Let 𝐹(𝑥) =
𝑛=0

∞

∑ 𝐶
𝑛
𝑥𝑛

So

𝐹(𝑥) = 𝐶
0

+ 𝐶
1
𝑥 + 𝐶

2
𝑥2 + 𝐶

3
𝑥3 + 𝐶

4
𝑥4 +···+ 𝐶

𝑛
𝑥𝑛 +···

𝑥𝐹(𝑥) =        𝐶
0
𝑥 + 𝐶

1
𝑥2 + 𝐶

2
𝑥3 + 𝐶

3
𝑥4 +···+ 𝐶

𝑛−1
𝑥𝑛 +···

𝑥2𝐹(𝑥) =                 𝐶
0
𝑥2 + 𝐶

1
𝑥3 + 𝐶

2
𝑥4 +···+ 𝐶

𝑛−2
𝑥𝑛 +···

Hence one obtains the recursion relation
𝐹

𝑛
= 𝐹

𝑛−1
+ 𝐹

𝑛−2

When subtracting one obtains

𝐶
0

+ (𝐶
1

− 𝐶
0
)𝑥 + 0𝑥2 + 0𝑥3 + 0𝑥4 +···+ 0𝑥𝑛 +···

Because of the recursion relation

We, however know that 𝐶
0

= 0 & 𝐶
1

= 1

So

(1 − 𝑥 − 𝑥2)𝐹(𝑥) = 𝑥
So
𝐹(𝑥) = 𝑥

1−𝑥−𝑥2

Such functions share many properties, such as sums, integrals, convergences, etc.

Convergence
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Let , for some𝑓(𝑥) =
𝑛=0

∞

∑ 𝑎
𝑛
𝑥𝑛 0 ≤ 𝑅 ≤ ∞

converges absolutely if𝑓(𝑥) 𝑥| | < 𝑅

And diverges if 𝑥| | > 𝑅

One considers the ratio test when trying to find the ratio of convergence of a power
series.

ρ =
𝑛→∞
lim

𝑎
𝑛+1

𝑥| |
𝑎

𝑛| | =
𝑛→∞
lim

𝑎
𝑛+1| |
𝑎

𝑛| | 𝑥 < 𝑅

<1 abs. Convergence
>1 divergence
One can see that if you were to take the reciprocal and move the coefficient 𝑎

𝑛

obtained to the RHS that one can say that

,𝑅 =
𝑛→∞
lim

𝑎
𝑛| |

𝑎
𝑛+1| |
convergentρ ⇔ 𝑥| | < 𝑅
divergentρ ⇔ 𝑥| | > 𝑅

Shifted power series

They take the form

𝑓(𝑥) =
𝑛=0

∞

∑ 𝑎
𝑛
(𝑥 − 𝑐)𝑛

For example

𝑓(𝑥) =
𝑛=1

∞

∑ (3𝑥−2)𝑛

𝑛4𝑛

In an attempt to achieve the form above, we do the following
(3(𝑥− 2

3 ))𝑛

𝑛4𝑛

=
3𝑛(𝑥− 2

3 )𝑛

𝑛4𝑛

Thus
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𝑎
𝑛

= 1
𝑛 ( 3

4 )𝑛

at center𝑅 =
𝑛→∞
lim 𝑛+1

𝑛
4
3 = 4

3 𝑥 = 2
3

Taylor Series Redux

One can consider Taylor series as a way of turning a function into a power series.
Theorem:

If 𝑓(𝑥) =
𝑛=0

∞

∑ 𝑎
𝑛
𝑥𝑛 = (

𝑛=0

∞

∑ 1
𝑛! 𝑓𝑛(0)𝑥𝑛

Then

converges absolutely on , recall𝑓 𝑥| | < 𝑅 𝑅 =
𝑎

𝑛| |
𝑎

𝑛+1| |

For Taylor, that is 𝑅 = (𝑛 + 1) 𝑓𝑛(0)

𝑓𝑛+1(0)

Within the domain of convergence:

is differentiable:𝑓 𝑑𝑓
𝑑𝑥 =

𝑛=0

∞

∑ 𝑛𝑎
𝑛
𝑥𝑛−1

is integrable:𝑓 ∫ 𝑓(𝑥)𝑑𝑥 =
𝑛=0

∞

∑
𝑎

𝑛

𝑛+1 𝑥𝑛+1

These can be used to compute hard integrals such as the error function, fresnel
integrals, hypergeometric functions etc.

Approximation and Lagrange Error

Approximation is used in order to approximate the final value of an infinite sum.

Consider the following

𝑛=0

∞

∑ 𝑎
𝑛

=
𝑛=0

𝑁

∑ 𝑎
𝑛

+ 𝐸
𝑁

Where is the error term𝐸
𝑁

Now, consider

𝑛

∞

∑(− 1)𝑛𝑎
𝑛

= 𝑎
0

− 𝑎
1

+ 𝑎
2

− 𝑎
3

+ 𝑎
4

− 𝑎
5

+···=
𝑛→𝑇
lim

𝑛=0

𝑇

∑ (− 1)𝑛𝑎
𝑛
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So brings up the theorem:

If , , then0 ≤ 𝑎
𝑛+1

≤ 𝑎
𝑛 𝑛→∞

lim 𝑎
𝑛

= 0 𝐸
𝑛| | ≤ 𝑎

𝑛+1

Because you are overshooting each time, one could say that the error term of the
current position of sequence is closer to the actual answer than the next term, as it
will go past it.

Example

Consider the following

and you want to approximate to .1
𝑒

0. 001

1
𝑒

= 𝑒
− 1

2 =
𝑛=0

∞

∑
( 1

2 )𝑛

𝑛! =
𝑛=0

∞

∑ (− 1)𝑛 1

𝑛!2𝑛

𝐸
𝑁| | ≤ 𝑎

𝑛+1
< 0. 001

1

(𝑁+1)!2𝑁+1 < 0. 001

True when , so(𝑁 + 1)! 2𝑁+1 > 1000 𝑁 ≥ 4

Integral approximation

Theorem:

If , and0 ≤ 𝑎
𝑛+1

≤ 𝑎
𝑛

𝑎'(𝑥) ≤ 0 ≤ 𝑎(𝑥) 𝑎(𝑛) = 𝑎
𝑛

Then

𝑁+1

∞

∫ 𝑎(𝑥)𝑑𝑥 < 𝐸
𝑁

<
𝑁

∞

∫ 𝑎(𝑥)𝑑𝑥

Otherwise

𝑁+1

∞

∑ 𝑎
𝑛

< 𝐸
𝑁

<
𝑁

∞

∑ 𝑎
𝑛

The left integral is the a Riemann sum with left upper boundaries, consider the
following (the left integral):
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The right integral on the other hand is, basically everything shifted 1 to the left as per
translation of the limit (the right integral):

E.g.
You are given

𝑛=1

∞

∑ 1

𝑛2 = π2

6 = 1. 6449...

And you wanna compute 𝐸
𝑁

< 0. 001

𝑎(𝑥) = 1

𝑥2

𝐸
𝑁

<
𝑁

∞

∫ 1

𝑥2 < 0. 001

𝐸
𝑁

< 1
𝑁 < 0. 001

So 𝑁 > 1000

Taylor series and Lagrange error

Theorem:
If is smooth (that is, a continuously differentiable function forever like ) for𝑓 sin 𝑥 𝑥
close to 0, then

𝑓(𝑥) =
𝑛=0

𝑁

∑ 1
𝑛! 𝑓𝑛(0)𝑥𝑛 + 𝐸

𝑁
(𝑥)
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Weak error term: is𝐸
𝑁

(𝑥) 𝑂(𝑥𝑁+1)

Lagrange error term:

for some between 0 and𝐸
𝑁

(𝑥)| | < 𝑓𝑁+1(𝑡)
(𝑁+1)! 𝑥𝑁+1 𝑡 𝑥

Example

,𝑒 =
𝑛=0

∞

∑ 1
𝑛! ( 1

2 )𝑛

= 1
𝑁!

1

2𝑁 + 𝐸
𝑁

Where 𝐸
𝑁

< 𝐶

(𝑁+1)!2𝑁+1

𝑑
𝑑𝑥

𝑁+1
𝑒𝑥 < 𝐶,  0 ≤ 𝑥 ≤ 1

2

𝑒𝑥 < 𝐶 < 𝑒
1
2 < 2

So
𝐸

𝑁
< 𝐶

(𝑁+1)!2𝑁+1 < 1

(𝑁+1)!2𝑁

I.e. because is close to . A good upper bound is because is𝐶 = 2 𝑒
1
2 2 𝑥 = 1

2 𝑒

exponential and thus taking the highest would be the most appropriate

Logical Statements

IF, THEN ( )⇒

IFF, IF AND ONLY IF ( )⇔

CONTRAPOSITIVE

CONVERSE

The proof of
𝑛→∞
lim (1 + 𝑥

𝑛 )𝑛 = 𝑒𝑥

Proof 1
Consider the following

𝑛→∞
lim 𝑒

𝑛ln(1+ 𝑥
𝑛 )
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The Maclaurin for can be recalled as the followingln(1 + 𝑥)

𝑘=0

∞

∑ (− 1)𝑘 𝑥𝑘+1

𝑘+1 = 𝑥 + 𝑂(𝑥2)

Now we know that the first term will be then the following

𝑛→∞
lim 𝑒

𝑛( 𝑥
𝑛 +𝑂( 𝑥2

𝑛2 ))

𝑛→∞
lim 𝑒

𝑥+𝑂( 𝑥2

𝑛 )

= 𝑒𝑥

Proof 2

Consider binomially expanding (1 + 𝑥
𝑛 )𝑛

(1 + 𝑥
𝑛 )𝑛 = 1 + 𝑛

1!
𝑥
𝑛 + 𝑛(𝑛−1)

2!
𝑥2

𝑛2 + 𝑛(𝑛−1)(𝑛−2)
3!

𝑥3

𝑛3 +···

= 1 + 𝑥 + 𝑛2−𝑛

𝑛2
𝑥2

2! + 𝑛3−3𝑛2+2𝑛

𝑛3
𝑥3

3! +···

Evaluating the limit

𝑛→∞
lim (1 + 𝑥 +

1− 1
𝑛

1
𝑥2

2! +
1− 3

𝑛 + 2

𝑛2

1
𝑥3

3! +···)

= (1 + 𝑥 + 𝑥2

2! + 𝑥3

3! +···) =
𝑘=0

∞

∑ 𝑥𝑘

𝑘! = 𝑒𝑥

Proof 3

𝑛→∞
lim 𝑦 =

𝑛→∞
lim (1 + 𝑥

𝑛 )𝑛

ln 𝑦 = 𝑛 ln(1 + 𝑥
𝑛 )

ln 𝑦 =
ln(1+ 𝑥

𝑛 )
1
𝑛

Applying l’Hopital

𝑑
𝑑𝑛

ln(1+ 𝑥
𝑛 )

1
𝑛

=
− 𝑥

𝑛2
1

1+ 𝑥
𝑛

− 1

𝑛2

= 𝑥 · 1
1+ 𝑥

𝑛

𝑛→∞
lim ln 𝑦 =

𝑛→∞
lim 𝑥 · 1

1+ 𝑥
𝑛
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ln 𝑦 = 𝑥

𝑦 = 𝑒𝑥

Epsilon-Delta definition of a derivative

The fundamental theorem of integral calculus and Riemann sums

A Riemann integral which is defined is given as the following

, whilst the theorem states that
𝑖=1

𝑛

∑ 𝑓(𝑥
𝑖
)(∆𝑥)

𝑖 ∆𝑥 →0
lim

𝑖=1

𝑛

∑ 𝑓(𝑥
𝑖
)(∆𝑥)

𝑖

Where is the ‘width’ of the sum. A uniformly defined width when computing sum∆𝑥
from the intervals would be , also called the ‘partition’.[𝑎, 𝑏] 𝑏−𝑎

𝑛

is the sampling, or rather the height. A uniform height can be chosen by .𝑥
𝑖

𝑎 + 𝑖 𝑏−𝑎
𝑛

I.e. you take the initial value and then add the interval of partition to it, depending𝑎
on th square (i.e. assume you split the value into 5 pieces, that is . You want𝑛 𝑛 = 5
to calculate the height of the third rectangle, so the corresponding value will be𝑥

). E.g. if its split into 2 you get an interval from and Because𝑎 + 3 𝑏−𝑎
5 𝑖 = 1 𝑖 = 2.

there are 2 squares. At and one will notice that they both will cancel,𝑛 = 2 𝑖 = 2
and thus it can be deducted one will compute only , (that is , , hence it will𝑏 𝑎 + 2 𝑏−𝑎

2

be and this will hold true when , which is always the last ‘square’ or𝑦 = 𝑓(𝑏) 𝑖 = 𝑛
‘rectangle’ no matter the chosen , showing that we are choosing and using the𝑛
formula for the right endpoint Riemann sum).

Then once getting the sampling or the ‘height’ you can substitute it into the function,
which will give you the corresponding values of the height for each rectangle𝑦
respectively. One has to repeat this for every rectangle, and then add the rectangles
up, hence the sum formula for each (for each rectangle, basically).𝑖

https://mathinsight.org/calculating_area_under_curve_riemann_sums

https://www.youtube.com/watch?v=FZKRsD9FqU4

https://mathinsight.org/calculating_area_under_curve_riemann_sums
https://www.youtube.com/watch?v=FZKRsD9FqU4
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ELSE


